Development of a GIS-Based Rights of Way Outdoor Advertising Sign Information System

December 2002

Prepared by: Bradley J. Overturf

Report No.
1136-F-02-8

Connecticut Department of Transportation
Bureau of Engineering and Highway Operations
Division of Research

Keith R. Lane, P.E.
Director of Research and Materials

James M. Sime, P.E.
Manager of Research

This project was sponsored by the Connecticut Department of Transportation in cooperation with the Federal Highway Administration.

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Connecticut Department of Transportation or the U.S. Department of Transportation, Federal Highway Administration. The report does not constitute a standard, specification or regulation.
Abstract

Due to the increased workload and new requirements being legislated to manage and maintain data on billboard advertising, ConnDOT staff sought to develop an effective means to address these needs using a concept provided by ConnDOT’s photolog group. Research was conducted to define data acquisition and management needs. Field photolog vans were outfitted with side-facing image and data acquisition systems, coupled with GPS data and complimentary digital images via hand-held cameras. A database was developed to collect, maintain and provide instantaneous access to billboard advertising data and information. The system has been implemented and shown to have a cost benefit ratio of 1.94 over a ten-year period of use.

Key Words

Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA 22161
Table of Contents and List of Figures

Title Page i
Technical Report Documentation Page ii
Table of Contents iii
Acknowledgements iv
Image and Data Needs in the Office of Rights-of-Way 1
Project Objective 2
Summary of Project Activities 2
Implementation of OASIS 10
Conclusions 10
Benefit Cost Analysis 10
Selected Reference 11
Appendix A: Project Benefit Cost Analysis 12

Figures:
Figure 1: ROW Imaging Module – Installed in 1997 3
Figure 2: Rater Keyboard & Example of Resulting File Output 4
Figure 3: GIS-Ready Access Table 4
Figure 4: Image Overlap 5
Figure 5: Billboard Out of Vehicle Camera Range 6
Figure 6: Billboard Detail Photograph 7
Figure 7: Route, Permit or Town Billboard Search 8
Figure 8: OASIS Data Input Form 8
Figure 9: Image Path Accessible Via Hyperlinks 9
Acknowledgements

The author wishes to acknowledge the guidance and efforts of the Project Advisory Panel. Their input was invaluable during the course of this project, and their counsel greatly facilitated implementation of the new OASIS system. They are: James Lewis, Thomas O’Hala, and John Durling.
Development of a GIS-Based Rights-of-Way
Outdoor Advertising Sign Information System (OASIS)

Summary Report

Image and Data Needs in the Office of Rights-of-Way

Since 1972, the Division of Rights-of-Way’s (ROW) Outdoor Advertising Control Section (OACS) has manually maintained an inventory of outdoor advertising signs. The manual inventory included pertinent information on the sign location, classification and condition, and still Polaroid photographs of the signage. New sign locations required on site review, and the data obtained were then plotted by hand on construction plans or rights-of-way maps to record sign deployment. Copies of all reports, data, photographs, maps and historical records were stored in a cumbersome paper file system. In addition the OACS unit was responsible for site inspections, photographing and classifying approximately nineteen hundred (1900) locations throughout the State of Connecticut, containing approximately thirty-five hundred (3500) signs. OACS staff also reviewed proposed locations for compliance with regulations enacted by federal and state legislative bodies, and coordinated the removal of illegally constructed signs.

The success ConnDOT’s Data Services Section (DSS) has had in developing management tools for specialized operations prompted ROW and Research personnel to review this problem in light of staffing limitations and expected growth in this area of the Department. A research project was developed that focused on providing automated data acquisition and storage systems to enhance the advertising sign-inventory process. Specifically, in the areas of data collection, storage, and dissemination of information and integration with related information systems in ROW were
addressed. This effort was further prompted by new legislative mandates on outdoor advertising and aided by technological developments within the Department that deal with imaging, data collection its distribution and use.

Project Objective

The project objective was to develop and implement an automated image- and data-acquisition and retrieval system for ROW. The system would be integrated with current field photolog activities and data processing operations.

Summary of Project Activities

A Project Advisory Group was established, which was chaired by ROW personnel. This action assured compliance with ROW project expectations and facilitated the work and implementation processes.

Research staff initially conducted a detailed survey of OACS needs and followed up with on-site interviews of affected staff and management. Several areas of technical and managerial concern were documented. In summary they were: 1) unacceptable image quality from Polaroid prints that often required additional field trips for re-filming; 2) a time-consuming collection process; 3) a storage medium susceptible to document misplacement; 4) no image and data backup and no fire protection; 5) difficulty in accessing information; 6) inconsistent data structuring due to subjectivity of inspections; and, 7) no provision for access to the Department’s local area network or Geographic Information System (GIS).

Initial efforts addressed upgrading ROW information capability. New PC’s were obtained with adequate speed and memory to handle GIS mapping and database applications. A side-
mounted video module (see Figure 1) was purchased and installed in one of DSS’ photolog vehicles to address ROW imagery needs. The module is a full-frame, standard resolution (640 X 480 pixels) digital video camera on an adjustable mount (to permit changes in camera angle), and related software. It was installed at the vendor’s facility in the spring of 1997. A modification was also made to the rater keyboard in the van to allow the photolog operator to manually flag billboard advertisements during field operations. By depressing a key as the photolog vehicle passes a billboard (See Figure 2), the operator provides input which is used to produce an automated billboard-database at the end of the photolog season. The database is referenced longitudinally by distance from a fixed point (chainage) and is then cross-referenced to GIS (latitude and longitude) data. Billboard locations can then be graphically displayed in a GIS (See Figure 3).
Figure 2: Rater Keyboard & Example of Resulting File Output (Route 91 data collected in 2002 is shown for log and reverse directions)

Figure 3: GIS-Ready MS Access Table; Below: Photolog Van-Generated GPS Points (2000 data)
Procedures for the field collection and office processing of images and data were established in two phases. Initially, the photolog vehicle ROW Video module was field tested to permit assessment of the resultant images and data by the Project Advisory Group. For this evaluation, sections of roads with representative outdoor advertising structures were selected by ROW and photologged at various vehicle speeds (20-60 MPH) and camera angles in both the horizontal and vertical planes. Digital images obtained were used to determine the optimal camera orientation and vehicle speed needed to capture required ROW data. The camera angle and position determined allowed a discernible overlap between the front and side image (see Figure 4), which makes it easier for the user to confirm side position as it relates to front-facing position.

![Figure 4: Image Overlap](image)

Editing procedures for ROW images was difficult and went through many changes as the system was developed and implemented. In 1999, side images were integrated into the standard photolog image editing process and in 2000 side imagery was incorporated into the new DigitalHIWAY viewing software.
Photolog images are now edited with software called DigitalHIWAY Kompressor. DSS has a contract for premastering of images and data to DVD. All discs are checked for quality by DSS upon receipt.

Based on an extensive review of the photolog images obtained, it was determined that all the data needs of OACS personnel were not addressed. For example, occasionally, billboard images fall too far from the roadway for the photolog camera to discern useful information (See Figure 5). Further, the Polaroid images previously used lacked clarity. Better quality “point and shoot” 35mm cameras replaced the Polaroid, and these have since been replaced by digital cameras.

Figure 5: Billboard Out of Vehicle Camera Range
To field verify the use of hand-held cameras, I-91 was chosen as the test case. The route was inventoried by OACS inspectors and Research personnel using hand-held 35mm cameras. Signs were photographed in a manner to illustrate and define detail (See Figure 6) and the resulting images assessed by the Advisory Group. Based on the group’s evaluation, photographic guidelines were established and a standardized legend and related data requirements were developed.

![Figure 6: Billboard Detail Photograph (OACS Photo)](image)

An updated OACS database was installed on a notebook PC for use by field inspectors. This system provided ready access to outdoor advertising signage data for input or editing by Permit Number, Town or Route (See Figure 7).
All OASIS information is displayed in the database as shown in Figure 8. DSS and ROW field tests showed that approximately half of the 1800 permitted signs are recognizable from photolog. These are updated annually and can be easily entered into the OASIS by exporting the image file from DigitalHIWAY and then linking it to the OASIS database. Inspection photographs of various displays
continue to be integrated into the system. Field-acquired data are then downloaded to office PCs after a field trip. These data are given distinct filenames and entered into an Access database via a multi-media field as a hyperlink (See Figure 9). This system allows images and corresponding database information to be viewed simultaneously when using GIS software. For example, in 2002 approximately 200 images were acquired to supplement photolog data and digitized permitting information. ROW field personnel continue to use a notebook PC loaded with the OASIS database to record on-site data updates.

Figure 9: Image Path Accessible Via Hyperlinks
Implementation of OASIS

Implementation involved providing user-PCs that were linked to the Department’s local-area-network (LAN). This facilitated OASIS data sharing. Additionally, DigitalHIWAY Server was set up by DSS and the Department’s Information Systems Group in the fall of 1999. Staff training was provided upon installation of the OASIS database and DigitalHIWAY.

OACS staffing limitations have prevented annual updates to the database and continued work on the GIS. The database is currently up-to-date, based on information provided by OACS. Today, desktop imaging is frequently used in place of field trips for review, confirmation and documentation of outdoor advertising signs.

Conclusions

An Outdoor Advertising Sign Information System (OASIS) has been successfully implemented in Rights of Way’s Outdoor Advertising Control Section. It is accessible by 39 personnel in other sections within ROW. The system consists of network and DVD access to photolog’s DigitalHIWAY image and data viewing tools, along with an Access database containing all traditional OACS data fields pertaining to permitted billboards.

Benefit Cost Analysis

A benefit cost analysis for this project has been performed over the last year (calendar 2002). This analysis shows that initially the benefit cost is 1.94 and demonstrates the cost-effectiveness of this project. Based on past experience it is projected that the benefit cost ratio will increase with system familiarity (Appendix A details this analysis).
Selected Reference

Appendix A: Project Benefit Cost Analysis

Salaries $32,780
Computer Hardware & Software $76,500
Media Materials $17,500
Contract Services $95,000

$221,780

Benefit Cost Analysis

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly savings</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$88,000</td>
<td>$88,000</td>
<td>$88,000</td>
<td>$88,000</td>
<td>$88,000</td>
<td>$88,000</td>
</tr>
<tr>
<td>Yearly maintenance and other recurring costs</td>
<td>$3,500</td>
<td>$3,500</td>
<td>$3,500</td>
<td>$3,500</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>Net yearly savings (savings minus maintenance and other recurring costs)</td>
<td>$36,500</td>
<td>$36,500</td>
<td>$36,500</td>
<td>$36,500</td>
<td>$86,000</td>
<td>$86,000</td>
<td>$86,000</td>
<td>$86,000</td>
<td>$86,000</td>
<td>$86,000</td>
</tr>
<tr>
<td>Capital cost</td>
<td>-$221,780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cum. 10-Yr. Savings</td>
<td>$612,500</td>
<td>Total savings</td>
</tr>
<tr>
<td>SPB</td>
<td>3.62 years</td>
<td>Simple payback = capital cost/net yearly savings</td>
</tr>
<tr>
<td>Discount Rate</td>
<td>5.00%</td>
<td>Rate used to calculate time value of money</td>
</tr>
<tr>
<td>NPV</td>
<td>$217,124</td>
<td>Net present value of all costs and savings</td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>1.94</td>
<td>Ratio of net present value of all savings to net present value of all costs</td>
</tr>
</tbody>
</table>