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1 Introduction 
In 2006, there were in total 71,724 motor vehicle collisions in Connecticut, of which 293 
were fatal and 27,366 involved injuries. For injury collisions, "following too closely", 
"fail to grant right of way", "driver lost control” and "speed too fast for conditions" were 
the four most common contributing factors, causing 30.73%, 20.71%,  13.09% and 
10.66% of the crashes involving injuries. For fatal collision, “influenced by 
alcohol/drugs”, “driver lost control”, “speed too fast for conditions” and “fail to grant 
right of way” were the four most common contributing factors, causing 30.38%, 23.55%, 
11.60% and 11.26% of the crashes involving fatalities. These contributing factors 
obviously point to some sort of aberrant driver behavior; however, insufficient pavement 
friction can often be a determining factor for whether or not this behavior results in a 
collision, especially under wet conditions. For example, when a driver is traveling on a 
road at a high rate of speed, pavement friction is a critical component of the braking 
distance required for the driver to stop suddenly in order to avoid colliding with an object 
on the road, or to slow down for an unexpected, sharp curve. Thus, the same driver 
behavior exhibited on a road with excellent pavement friction under wet conditions is 
probably less likely to result in a collision, leading to a fatality or serious injury. This 
suggests that wet pavement friction is a critical element of road safety, especially in the 
vicinity of sharp curves, or other locations where drivers need to frequently brake, such 
as intersections and/or driveways. While drivers may follow other vehicles too closely on 
straight-aways without intersections or driveways, there is much less of a need to brake 
suddenly in such road segments. There are thus two questions of interest here: 

(i) Is wet pavement friction a significant factor for explaining variation in crash history 
among similar locations on the road network? 
(ii) Is this factor more relevant at locations with high expected braking frequency, 
such as sharp curves and intersections/driveways? 

There has been some effort into incorporating pavement friction as a predictor of crash 
risk and in the identification of hazardous road locations. A recent study at the University 
of Wisconsin–Madison (Noyce et al., 2007) investigated the relationship between skid 
resistance and traffic safety, but only focused on the relationship between pavement 
material and skid resistance and their effect on safety. The study did not consider the 
interaction between this relationship and other road characteristics that might affect the 
need for braking. Our study describes a framework to determine to what degree wet 
pavement friction is associated with the number of collisions, and to determine the types 
of locations on the road network at which the association is strongest. Many state 
highway agencies, including Connecticut Department of Transportation (ConnDOT), 
measure wet pavement friction at locations where collisions have occurred, or which 
have been flagged as potentially high collision locations. These measurements help to 
determine whether or not the wet pavement friction in these areas meets ConnDOT 
standards, and to correct the situation if necessary, or to confirm whether or not it may 
have been a factor contributing to the collisions.  

A statistical analysis of the association between wet pavement friction and road safety 
experience, controlling for pertinent roadway characteristics, enables highway agencies 
to better identify road locations where the wet pavement friction should be tested and 
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improved in order to most effectively reduce the incidence of fatal and serious injury 
collisions. For describing the road safety experience, we focus on serious injury and fatal 
collisions rather than property damage or minor injury collisions, as the reporting rate of 
the former is more reliable, and these collisions result in the greatest cost to society.  

In order to control for their effects, we considered road characteristics that fall into two 
categories: those that define conditions under which wet pavement friction is more likely 
to be a contributing factor and others that are known to have some association with road 
safety. The characteristics that we included under each category are: 

Test characteristics: degree of horizontal curvature, rate of change of vertical curvature, 
number of intersections and driveways; 
Control characteristics: pavement width, area type (rural, suburban, urban), and speed 
limit. 

Study sites are characterized by these variables and the data are analyzed statistically to 
determine whether or not the wet pavement friction is associated with the rate of fatal and 
serious injury collisions. Whether or not this association is also dependent on the 
combination of test characteristics expected to exacerbate the presence of low wet 
pavement friction with regard to safety is examined. The results tell us the extent to 
which there is a possibility of reducing traffic injuries and fatalities by improving wet 
pavement friction, and where the greatest benefit is likely to be achieved.  

ConnDOT Division of Transportation Research measures wet pavement friction on roads 
specified by other offices within ConnDOT, Traffic Engineering in particular. Because 
the specified road sections are generally selected on the basis of membership on the 
SLOSSS (State List of Surveillance Study Sites) or because of having recently 
experienced a crash, this list can be considered neither representative nor random, 
thereby possibly introducing selection bias (or selection effect). This may have the effect 
of distorting statistical analysis and results due to the non-probability based sampling 
scheme, which may include samples that preferentially include or exclude certain kinds 
of results. Consequently, measures of statistical significance such as p-values of 
hypothesis tests may appear stronger than they really are, leading to incorrect inference 
and decision making. We refer to such sites as “found sites” and refer to data from such 
sites as “found data”. Arguing that restriction solely to such sites will not provide 
adequate inference, we augment this “found” data with information observed for 
“random” data locations. Statistical analysis is then carried out on data from “combined” 
sites. 

This study uses the Generalized Linear Models (GLIMs) for modeling crash counts as a 
function of explanatory variables including pavement friction. GLIMs include Poisson 
regression, over-dispersed Poisson regression, and Negative Binominal regression, all of 
which are more suitable for modeling crash counts modeling than simple linear 
regression. We specifically use these models to investigate the relationship between crash 
counts and pavement friction, adjusting for main and interaction effects of other relevant 
factors, such as road characteristics (such as horizontal curves, driveways, intersections, 
and area type). The interactions between road characteristics and different crash types are 
also estimated and will enable us to study potential differences in the effect of pavement 
friction on crashes specifically at locations with high braking frequency.  
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Section 2 provides a description of pavement friction and cites previous literature on 
studying the effect of pavement friction on highway safety. Section 3 provides a 
description of the study design, i.e., a description of the “found data”, the sample size 
determination that leads to collection of data at “random” locations in order to avoid 
selection bias in the data analysis, and the determination of the “combined” data. Section 
4 describes the details of the statistical data analysis using log-linear model fits to the 
“combined” data. Section 5 provides an interpretation of results and a detailed summary.  
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2 Background 

2.1 Pavement Friction 

Early research on pavement surface conditions suggested skid resistance by two 
categories of texture: microtexture and macrotexture (Csathy et al. 1968, Henry 2000). 
Microtexture describes roughness on the surface of the individual coarse aggregates in 
the mix. Achieving an adequate microtexture involves selecting aggregate that starts with 
a rough microtexture and is able to resist the polishing effect of vehicle traffic. 
Macrotexture is used to describe the pavement roughness due to the particular 
arrangement of aggregate particles along the surface. The magnitude of this component 
will depend on several factors. The macrotexture of a freshly laid pavement depends on 
the mix of aggregate and construction method used to place the surface layer. Over time, 
the microtexture of a pavement can change due to a combination of traffic loading and 
environmental impacts (increased temperatures and freeze-thaw mechanics). The 
dynamic nature of the pavement, and thus skid resistance, is why periodic testing is 
required to ensure surface friction is adequate and safe.   

Adequate friction on a paved surface is critical to the braking needs of a vehicle. Without 
adequate friction between the pavement and the tire vehicles are unable to stop in a 
reasonable manor, thus leading to crashes. The friction of a pavement is often measured 
in terms of a “Skid Number”. Due to the large variation in pavement materials, aggregate 
properties, vehicle speed, tire wear and tire types used on the roadway, standard test 
procedures were developed. To control for tire type and tire wear, a standard test tire must 
be used and the wear on that tire must be within a set standard established in AASHTO T 
242.  Typically pavement friction is not an issue under dry conditions. However, when a 
pavement becomes wet is when pavement friction becomes a much larger problem. 
Therefore, the majority of friction testing involves determining the wet pavement friction. 
Friction testing equipment has been designed to spray a metered amount of water onto the 
roadway immediately in front of the test tire before the breaks are applied. Figure 2-1 
depicts the friction vs. tire slip curve generated from this test procedure. The friction 
number is obtained from coefficient of friction values obtained after the tire has been 
fully locked. Anti-lock brakes prevent the vehicle from exceeding the peak coefficient 
friction portion of the curve. In future research, peak coefficient friction could be a more 
realistic value to use when calculating friction number. However, there are still a 
significant number of vehicles on the road without anti-lock brakes.  

Pavement friction data are collected using a friction testing machine (Figure 2-2). The 
tow vehicle (loaded with water) pulls a trailer and maintains a speed of 40 mi/h. Once the 
operator starts a test, one of the tires (either the smooth or the ribbed) on the trailer is 
locked using the breaks on the trailer. The smooth tire is more sensitive to pavement 
macro-texture, while the ribbed tire is more sensitive to micro-texture changes in the 
pavement. The amount of force needed to lock the tire and start the skid is used to 
calculate the skid number. If the test is performed at any other speed than 40 mi/h, there 
is a speed correction factor that has to be applied to the resulting skid number. Therefore, 
skid number is reported at a standard speed of 40 mi/h (FN40R). Skid number is calculated 
using equation (1) and corrected to FN40R using equation (2). 
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Figure 2-1. Coefficient of Friction V. Tire Slip (Henry 2000). 

 

 

Figure 2-2. ConnDOT Friction Tester. 

 
 WFFNs  100100     (2-1) 

where FNs : Friction number at the measured speed s 
μ : Coefficient of friction during break lockup. 
F: Tractive horizontal force applied to the tire, lb. 
W : Vertical load applied to the tire, lb. 

and 
 sFNFN sR  405.040   (2-2) 

where FN40R = Ribbed tire friction number at 40 mi/h.  
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2.2 Previous Research 

There has been considerable recent research conducted on pavement friction and its effect 
on traffic safety. It is well documented that a pavement with a high fiction number can be 
a significant factor in reducing the likelihood of a crash (Noyce et al. 2007). Wallman et 
al. (2001) reported several earlier studies on this issue in a literature review. An early 
study conducted by Giles et al. (1964) investigated the correlation between skid number 
and skidding crashes. They measured skid number on two grouped sites: crash sites and 
random sites. Crash sites were the locations where skidding crashes occur frequently in 
wet weather. Random sites were selected randomly. It was found that the difference 
between the mean skid number for random sites and the mean skid number for crash sites 
was 15. The study shows that a skid-related crash is more likely to occur on a pavement 
with a lower skid number. Schulze et al. (1976) conducted a regression analysis between 
the friction number and crashes that occur on wet pavements in Germany. They found 
that the percentage of wet road crashes increases with decreasing friction. To incorporate 
additional factors into the analysis, Griffin (1984) modeled wet weather crashes by using 
multiple linear regression analysis. Several variables were used as surrogates for vehicle 
demand for friction, which include average daily traffic (ADT), access (ACC), skid 
number at 40 mi/h (FN), proportion of time wet (TW), mean traffic speed (VM), standard 
deviation of the speed distribution (V), lanes of traffic (LN). They showed that about 58 
percent of the variance of wet crash rate (WCR) on high speed roads could be explained 
by the following equation: 

LNTW

SNACCADTWCR




32.1286

4.034.20009.07.21
  (2-3) 

and that about 46 percent of the variance of (WCR) on low speed roads could be 
explained by the following equation: 

SNACC

VVMADTWCR




025.069.0

54.0053.0001.075.0
 (2-4) 

Unfortunately, no additional relevant information for the equations was provided in the 
reference. However, their findings suggested that increasing friction helps to reduce wet 
crash rate.  

Al-Mansour (2006) collected a massive amount of friction measurements using a Mu-
meter covering more of the major highway network in the Kingdom of Saudi Arabia. A 
regression model was used to model the crash density based on skid resistance number 
skid number and the best model was found to be bAD aSN . It was concluded that a 
decreasing skid number leads to an increase in crash density. In another study, Caliendo 
et al. (2007) used Poisson, Negative Binominal and Multinominal regression models to 
analyze crash and other factors, including length, curvature, annual average daily traffic, 
sight distance, side friction coefficient, longitudinal slop and the presence of junctions. It 
is found that a wet pavement significantly increase the number of crashes. 

As stated above, pavement friction is important for traffic safety, but it is not very easy to 
identify the effect of poor friction on crash occurrence (Wallman et al. 2001). Drivers 
adjust their behavior depending on many factors, such as sharp horizontal curves, the 
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surrounding environment and their perception of road friction. Henry (2000) plotted the 
ratio of wet-dry crash versus skid number based on the fiction measurement from sites in 
Kentucky, but no significant trends were observed. Ohio DOT used the results of the 
analysis of real ODOT crash, friction, texture and roughness data to investigate the 
relationship between crash data and these surface-related variables (Larson et al. 2008). 
However, no strong correlation between even one of the surface-related variables and 
crash was discovered. They pointed out that the poor statistical relationship indicated that 
there are other types of factors outside of surface characteristics that might have 
significant influence on crashes. A recent study at the University of Wisconsin-Madison 
explored the relationship between asphalt mix design, skid friction and roadway safety 
and found that there is no relationship between crash frequency and pavement skid 
friction (Noyce et al. 2007). In addition, these studies only focused on the relationship 
between skid resistance and the effect on safety. There is no consideration of any 
interaction between this relationship and other road characteristics that might affect the 
need for braking. 
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3 Study Design 

3.1 Found Data 

Skid resistance of the pavement is the opposing force developed at the tire-pavement 
contact area.  It plays an important role in maintaining vehicle control and reducing the 
stopping distance in braking emergency situations. Skid number is measured as a critical 
parameter to evaluate the performance of pavement. This value is generally measured by 
testing the force required to hold a tire at a full skid on a wet pavement surface (Cairney 
1997). FN40R describes the friction number measured at 40 mi/h with a ribbed tire. 
Representative values for friction and associated recommendations are depicted in Table 
3-1. 

Table 3-1. Example Skid Numbers and Prescribed Response (Jayawickrama et al., 
1996) 

Skid Number Comments 
< 30 Take measures to correct 
≥ 30  Acceptable for low volume roads 
31 – 34 Monitor pavement frequently 
≥ 35 Acceptable for heavily traveled roads 

 

As noted in the introduction, ConnDOT Division of Transportation Research measures 
wet pavement friction on roads specified by other offices within ConnDOT, Traffic 
Engineering in particular. Because the specified road sections are generally selected on 
the basis of membership on the SLOSSS (State List of Surveillance Study Sites) or 
because of having recently experienced a crash, this list can be considered neither 
representative nor random, thereby possibly introducing selection bias (or selection 
effect). This may have the effect of distorting statistical analysis and results due to the 
non-probability based sampling scheme, which may include samples that preferentially 
include or exclude certain kinds of results. Consequently, measures of statistical 
significance such as p-values of hypothesis tests may appear stronger than they really are, 
leading to incorrect inference and decision making. We refer to such sites as “found sites” 
and refer to data from such sites as “found data”. Arguing that restriction solely to such 
sites will not provide adequate inference, we and augment this “found data” with 
information observed for “random” data locations. A similar approach was discussed in 
Overton et al. (1993). They augmented a regional probability sample for stream surveys 
of US EPA’s National Surface Water Survey (NSWS) with data from “found sites” 
contained in WATSTORE, a vast hydrological and water quality database of USGS, and 
pointed out that this combination of data from a non-probability based method (“found 
data”) with observations from a true probability based statistical sample (“random” data), 
enables better retention of the estimation properties inherent in a probability sample. This 
is discussed in Sections 3.2 through 3.4.  
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3.1.1 Road Characteristics 

ConnDOT provides various tools for data collection, including photolog, highway 
geometry program, and other archived data. The Automatic Road Analyzer (ARAN) 
photologging van is equipped with high definition forward facing, side facing and 
downward facing video cameras. The cameras on the van are configured to take a picture 
every 10 m to generate a detailed photolog of all state roads on a yearly basis. 
Furthermore, the ARAN van contains gyroscopes that use pitch and yaw (“pitch” refers to 
the vertical angle of incline in the direction of travel; “yaw” refers to the amount of 
change in the horizontal direction as a vehicle travels), in order to collect detailed road 
geometry such as curvature and grade.   

Divided and Undivided Roads: 

We created separate datasets for Divided roads and Undivided roads, and carried out 
separate statistical analysis for each. A Divided road is divided down the middle by a 
barrier that separates traffic going in different directions. An Undivided road has no 
physical barrier in the middle. Divided and Undivided roads have different characteristics 
in terms of traffic flow, road facilities and crash occurrence. Divided roads generally have 
heavier traffic and wider shoulder width than Undivided roads. In addition, crash types 
also differ significantly on Undivided and Divided roads. For example, head-on crashes 
are common on Undivided roads, however, seldom occur on Divided roads. For these 
reasons, it would be inappropriate to analyze data for Undivided roads and Divided roads 
together using the same model. 

The horizontal curvature data are collected using gyroscope heading to obtain the 
relative direction in which ARAN is pointed and a Distance Measurement Instrument 
(DMI) sensor collects the distance traveled. Then, using the heading (in degrees) and 
distance in meters the radius of curvature can be calculated.   

The vertical curve or grade data are collected by the ARAN using the pitch and roll 
gyro sensors. The pitch, jointly with the DMI, measures the longitudinal gradient and the 
roll gyro measures the transverse slope of the road. The grade data are reported in percent 
(%) of rise over run. Grade and curvature data were collected every 10 m along the entire 
length of the test road. According to the manufacturer, the ARAN system is capable of 
providing grade and curvature data at “rod and level” accuracy and meets the Federal 
Highway Administrations (FHWA) regulations for curve classification (Roadware 2007).  
The photolog was used to assure the consistency of road characteristics over the years 
during which the study was performed. It was also utilized to determine the area type 
surrounding the road segments under investigation. The digital highway geometry 
program served as the source for radius values of road lines, based on which we 
determine if a curve exists.  

Connecticut DOT (ConnDOT) Photolog was used to assure the consistency of all road 
characteristics over the years during which the study was performed. It was also utilized 
to observe the number of access points (intersection and driveway) and determine the 
area type surrounding the road segments under investigation. Photolog is a roadway 
viewing system which is updated annually. Each state-maintained highway in 
Connecticut could be viewed with Photolog, which consist of images of the roadway 
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taken every 0.01 km. The photolog also consists of a set of corresponding highway 
geometric data. These data are all collected by Automatic Road Analyzer (ARAN).   

The ConnDOT Automatic Road Analyzer (ARAN) photolog van is equipped with high 
definition forward facing, side facing (now replaced with wide angle forward only) and 
downward facing video cameras. The cameras on the van are configured to take a picture 
once every 10 m in order to generate a detailed photolog of all state roads on an annual 
basis. Furthermore, the ARAN van contains gyroscopes that use pitch and yaw to collect 
detailed road geometry such as curvature and grade. The horizontal curvature data are 
collected using gyroscope heading to obtain the relative direction in which ARAN is 
pointed and a Distance Measurement Instrument (DMI) sensor collects the distance 
traveled. Then, using the heading (in degrees) and distance in meters the radius of 
curvature can be calculated. The vertical curve or grade data are collected by the ARAN 
using the pitch and roll gyro sensors. The pitch, jointly with the DMI, measures the 
longitudinal gradient and the roll gyro measures the transverse slope of the road. The 
grade data are reported in percent of rise over run. Grade and curvature data were 
collected every 10 m along the entire length of the test route. According to the 
manufacturer, the ARAN system is capable of providing grade and curvature data at “rod 
and level” accuracy and meets the Federal Highway Administrations (FHWA) regulations 
for curve classification (Roadware 2007).  

The radii of horizontal curves were collected for each segment by observing the photolog. 
The minimum value of radiuses was selected to present horizontal curvature 
characteristic for a segment. A curve in our study was defined as a location where high 
brake frequency is expected. Thus, if the expected operation speed through the curve is 
lower than the posted speed limit in the vicinity of the curve, the curve is considered a 
significant curve in our study. A literature review on the relationship between operation 
speed and radius of curve was conducted. Emmanuel et al. (1998) plotted the results 
based observation data on a highway in mountainous area, as shown in Figure 3-1. 

Ritchie et al. (1968) recorded lateral acceleration and speed for fifty subjects during 
normal road driving. He found that lateral acceleration was constant below 9 m/s (32 
km/h), so that speed V was related to curve radius R by  

RVLatacc 2       (3-1) 

At speeds above 9 m/s, drivers were found to choose a lower speed than that which 
would yield constant lateral acceleration, such that there was a linear relationship 
between lateral acceleration and speed. 

Emmerson et al. (1969) proposed an exponential model to describe the relationship 
between speed of vehicles and radius of curve.  

 ReV 017.0174   (3-2) 

The maximum speed he focused is 74km/hour, i.e. 46.25 mi/h. Some calculations are 
shown in Table 3-2. Schurr et al (2002) summarized more equations for operating speeds 
on horizontal curves, which are shown in Table 3-3. According to this analysis, the 
definition of a curve selected for this study is shown in Table 3-4.  
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Figure 3-1. Speed vs. Radius (Emmanuel et al. 1998). 

 

Table 3-2. Calculations Using Emmerson (1969) Formula. 

Radius (meter) Speed (mi/h) 
50 26.48 
100 37.80 
150 42.64 
200 44.71 
250 45.59 
300 45.97 
350 46.13 
400 46.20 
450 46.23 
500 46.24 
550 46.25 
600 46.25 
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Table 3-3. Equations for Operating Speeds on Horizontal Curves (Schurr et al. 
2002). 
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Table 3-4. Definition of Curve. 

Speed limit (mi/h) Radius (m) 
25 < 50 
30 < 100 
35 < 100 
40 < 150 
45 < 250 
50 < 350 
55 < 500 
60 < 1000 
65 < 2000 

 

Vertical curvatures (grade) were also collected from the ConnDOT ARAN photolog. The 
largest absolute value of grade for each given road segment was used. Data on other road 
characteristics, including speed limit, shoulder width, driveways, intersections and area 
type were collected from spreadsheets or databases available from ConnDOT. Table 3-5 
lists the variables that are potential predictors in the log-linear statistical models for 
counts. The ConnDOT Photolog system (including the road geometry archive) served as 
the primary source for these additional data. We discuss these predictors in more detail in 
Section 3.3. 

3.1.2 Crash Data 

One of the response variables is crash count, which denotes the number of crashes 
occurring on a given segment of road for three years prior to the pavement surface 
friction testing date. Crash counts were extracted from databases provided by the 
Accident Records section of ConnDOT and were merged with the database consisting of 
the predictor variables for the “found sites”. We only used collisions where the police 
report lists at least one individual involved sustaining an injury code of K, A or B, for 
“killed”, “life-threatening injury”, or “visible injury”. This is because the rate of non-
reporting of lower severity collisions is not consistent in all jurisdictions. 

ConnDOT crash data record collision type, pavement surface condition and other relevant 
information for each crash. The collision types in the data have 17 categories as shown in 
Table 3-6. Four types of crash were collected for three years prior to the friction test dates 
for each predetermined road segment, which are as follows: 

 Total Crashes: The sum of all crashes  
 Wet Crashes: The crashes that occur on wet road surface 
 Type 1 Crashes (Segment Related Crashes): Sideswipe-Opposite Directions, 

Head-on, Fixed Object, Moving Object 
 Type 2 Crashes (Intersection Related Crashes): Turning-Same Direction, Turning-

Intersecting Paths, Sideswipe-Same Direction, Angle, Rear-end, Pedestrian. 

Type 1 crashes are expected to be associated with the presence of a curve, while Type 2 
crashes may be associated with the presence of an intersection or driveway.  
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Table 3-5. Description of the Predictor variables 

Variable Definition  Values 

Volume 

The average value of ADTs for three years prior 
to pavement surface friction testing date. The 
ADTs are estimates of vehicles passing through 
the defined section of highway on an average day 
in a certain year. For divided roads, 50% 
directional distribution is used.  

> 0          
continuous 

Speed 
Speed limits divided into several categories. 
Speed limit is the maximum speed legally 
permitted on a given stretch of road.  

25-30 
35-40               
45-50              
>55 

Curve 
(Classification I) 

Presence of horizontal curve on a given segment 
of road. 

Yes, No 

Curve 
(Classification (II) 

Presence and severity of horizontal curve on a 
given segment of road. 

None 
Mild 
Severe 

Curve 
(Classification III) 

Presence of horizontal curve on a given segment 
of road and whether or not it is isolated. 

None 
Isolated 
Non-isolated 

Shoulder Width 

The sum of left side and right side shoulder 
widths of a given road segment. The values are 
divided into several categories. For undivided 
roads it is the sum of the shoulder on both sides 
of the road; for divided, it is the sum of the 
shoulder on the side of the road and between the 
left edge of each travel way and the median.  

< 4 ft                 
4-11 ft               
12-19 ft             
> 19 ft 

Mean FN40R 
The average skid numbers at 40 mile/hour, which 
were measured by ConnDOT locked-wheel skid 
trailer with a standard ribbed tire.  

> 0           
continuous 

Driveway 

A binary variable indicating the presence of a 
driveway on a given segment of road. A driveway 
is a private road that provides vehicular access 
from a property to the study road segment. 

0 = no    
1 = yes 

Intersection 

A binary variable indicating the presence of an 
intersection on a given segment of road. An 
intersection is a road junction where two or more 
public roads either meet or cross at grade.  

0 = no 
1 = yes 

Area Type 
The surrounding area type of a given segment of 
road 

urban or rural 

Grade 
A measure of the road's incline or slope. The 
amount of grade indicates how much the road is 
inclined from the horizontal. 

Continuous 
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Table 3-6. Taxonomy of Crash Types 

ConnDOT 
Collision 

Type Code  

Description of Collision Type Assignment to Collision Type 
Numbers for this Project 

1 Turning - Same Direction Type 2 
2 Turning - Opposite Direction Type 2 
3 Turning - Intersecting Paths Type 2 
4 Sideswipe - Same Direction Type 2 
5 Sideswipe - Opposite Directions Type 1 
6 Miscellaneous Non-Collision  

7 Overturn  

8 Angle Type 2 
9 Rear-end Type 2 
10 Head-on Type 1 
11 Backing  

12 Parking  

13 Pedestrian Type 2 
14 Jackknife  

15 Fixed Object Type 1 
16 Moving Object Type 1 
17 Unknown  

3.2 Sample Size Determination and Selection of “Random” 
Locations 

The data from “found sites” were augmented with data from “random” sites with similar 
characteristics on explanatory variables, and inference was made on the “combined” data 
using log-linear models. For sample size determination in the Poisson log-linear 
regression model setup, we used the approach in Signorini (1991). We also extended this 
approach for the Negative Binomial log-linear regression. The technical details are 
described in Appendix I.  

In our situation, let Yi be the crash count at the ith “found site”, with mean i = EYi. The 

log-linear model under a Poisson sampling distribution assumes that given the Volume 
and MeanFN40R at site i, Yi follows an overdispersed Poisson (or a Negative Binomial) 
distribution with mean i , and   

   iii VolumeMeanFN ln40ln 210    (3-3) 

Since we assumed here that all segments were 0.5 mile long, we did not have to include 
ln(SL) as an offset (note that we do include ln(SL) as an offset in the analysis discussed in 
Section 4, where the road segments have different lengths). If other explanatory variables, 
such as road characteristics are available, they may be included in the model formulation 
on the right hand side of (5) as well. At the start of our analysis, we only had reliable 
information on MeanFN40R and Volume, and hence, we only used this information for the 
sample size determination, using the approach in Signorini (1991) (also see Shieh 2001). 
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Clearly, incorporation of such other explanatory variables “will not reduce the sample 
size” determined by using only Volume and MeanFN40R, and therefore cannot result in 
bias due to undersampling at “random” sites. Information on other covariates, such as 
Speed, Curve, Intersection, Driveway, etc. were constructed later, and have been used in 
fitting the log-linear models for crash counts at the “combined” (“found” and “random”) 
locations, as described in Section 4. Also, we only used severe crashes as the response 
variable in Equation (    iii VolumeMeanFN ln40ln 210    (3-3). Models 

involving “Total Crashes” as response variable should show higher power in the Wald 
tests (McCullagh and Nelder 1989) discussed below. 

We determined the sample size required to carry out a Wald test of the hypothesis H0: 
β1=0, where β1 denotes the coefficient of MeanFN40R in Equation 
(    iii VolumeMeanFN ln40ln 210    (3-3). Under H0, wet friction has no 

effect on the expected crash count. We would expect that the estimated value of β1 is 
negative, indicating that as the MeanFN40R value increases, the expected average crash 
count decreases (on the log scale). A power calculation must be done at a value of β1 

which is consistent with the alternate hypothesis H1: β1 ≠ 0. The power of the Wald test is 
based on the independent data, and on the "nuisance" parameters, i.e., parameters other 
than β1. In order to construct Table 3-7 and Table 3-8, the idea is to estimate the power 
via simulations as follows: 

Step 1. For a specific value of the parameter β1 which is chosen consistent with the 
alternative hypothesis, we fit the log-linear model (overdispersed Poisson, or Negative 
Binomial), constraining β1 coefficient to be this specified value (implemented by 
treating MeanFN40R as another offset in the model). 

Step 2. Assuming that the road characteristics would be (roughly) the same for the 
“found sites” and “random” sites, we use the joint empirical distribution of the data to 
randomly select the characteristics for the number of observations desired. 

Step 3. We simulate the number of crashes based on the model fit in Step 1 and the 
data created in Step 2. 

Step 4. We fit the appropriate model to the data set simulated in Step 3, but no longer 
"knowing/constraining" the value of the β1 coefficient. 

Step 5. At a selected level of significance, say 0.05, we check whether the model fit in 
Step 4 rejects the null hypothesis H0: β1=0; count a rejection of H0 as a success, and a 
non-rejection as a failure.   

Step 6. Repeat Steps 2-5 for each of the chosen N values shown in Table 3-7 and 
Table 3-8. The power is calculated as the number of rejections in Step 5 divided by N. 
Note that N denotes the number of ½ mile segments (for a total of N/2 miles). 

In Table 3-7 and Table 3-8, power calculations are reported for several selected sample 
sizes N, under five scenarios, each consistent with the alternate hypothesis H1. Power 
calculations are based on M=10,000 sets of simulated data, based on parameter estimates 
from data for the “found sites” in each case. The Percentages in the column headings 
indicate the percentage of crashes of “baseline” for a 1 standard deviation (about 8 units) 
increase in MeanFN40R. As expected, the power increases as we move away further from 



   

17 

H0. From Table 3-7, we see for example that, using the overdispersed Poisson model, and 
a sample of size N=100 of one-half mile segments (i.e., a total mile-length of 50 miles), a 
test for detecting a 70% decrease of MeanFN40R of crashes will yield a power of 0.5146. 
To summarize, these power calculations are based on only Volume, Segment length and 
MeanFN40R (and in that sense, they are approximations to the numbers we might get 
when we include other road characteristics as covariates into the log-linear model).   

Table 3-7. Power tables for the Over-dispersed Poisson model (“Found data”) 

N 90% 80% 70% 60% 50% 
100 0.1416 0.2907 0.5146 0.742 0.8744 

150 0.1476 0.3494 0.652 0.8706 0.9579 

200 0.1662 0.4285 0.7557 0.9353 0.9851 

250 0.1760 0.4908 0.8325 0.9699 0.9944 

300 0.1963 0.5565 0.8775 0.9845 0.9978 

350 0.2066 0.6072 0.923 0.9924 0.9992 

400 0.2263 0.6537 0.9521 0.9968 0.9996 

460 0.2442 0.7209 0.9678 0.9992 0.9998 

500 0.2612 0.7481 0.9800 0.9994 1.0000 

540 0.2702 0.7730 0.9839 0.9997 1.0000 

720 0.3373 0.8810 0.9971 1.0000 1.0000 
N: number of sample locations/sites of ½ mile segments selected for data collection. 
Percentage: Percent of crashes of baseline for 1 standard deviation increase in 
MeanFN40R (see Appendix I). 
 

Table 3-8. Power tables for the Negative Binomial model (“Found data”) 

N 90% 80% 70% 60% 50% 
100 0.0942 0.1716 0.3170 0.5250 0.7363 

150 0.0994 0.2141 0.4154 0.6874 0.8869 

200 0.1032 0.2566 0.5248 0.8054 0.9533 

250 0.1156 0.3024 0.6197 0.8807 0.9808 

300 0.1216 0.3533 0.6994 0.9290 0.9936 

350 0.1331 0.3901 0.7640 0.9570 0.9980 

400 0.1400 0.4351 0.8110 0.9757 0.9993 

460 0.1593 0.4975 0.8653 0.9904 0.9999 

500 0.1675 0.5338 0.8902 0.9921 0.9999 

540 0.1712 0.5560 0.9119 0.9954 1.0000 

720 0.2130 0.6821 0.9688 0.9993 1.0000 
N: number of sample locations/sites of ½ mile segments selected for data collection. 
Percentage: Percent of crashes of baseline for 1 standard deviation increase in 
MeanFN40R (see Appendix I). 
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3.3 Collection of Other Road Characteristics 

Having determined the optimal sample size of N = 300 (corresponding to 150 miles), we 
obtained other characteristics for the road locations at the “found” and “random” sites. 
For each location in the “found” data set, we randomly selected from the rest of the 
Connecticut State highway network another highway location with a similar combination 
of control and test characteristics based on probabilistic methods. Any variables not used 
for matching (e.g., Volume), but rather to be used as covariates, was gathered from the 
videolog or other archival databases. These measurements and the road characteristics 
data were collated into a single database indexed by road location and the matching 
factors.  

Speed and shoulder width match almost perfectly between the “found” and “random” 
data. One reason they do not exactly match is that some roads whose pavements were 
replaced within 3 years prior to friction test date were deleted. The variables Driveway 
and Intersection also nearly match between the “found” and “random” sites. There are 
more curves in the “found” data than the “random” data, most likely because ConnDOT 
chose those roads with curves intentionally, since they are more crash prone.  

The MeanFN40R in the “found” data is about 10 units smaller than in the “random” data; 
again the reason may be that ConnDOT mainly focused on roads with suspected low 
pavement friction. The wet pavement friction for the “random” sites were collected by 
the Division of Research using extra runs with the measurement equipment during the 
summer of 2008 (it is not possible to make these measurements in freezing weather). 
These friction data, along with that from the measurements at the “found” sites, was 
augmented with road characteristics and traffic volume data to build the analysis 
database.  

Curve Definitions:  

a) In the initial stage of our project, we treated Curve as a binary variable indicating 
whether there is a presence of horizontal curve on a given segment of road. The 
definition of curve is based on the curve radius criterion we set, and we first 
incorporated the road characteristic Curve as a binary variable: (Yes, No).  

b) Later in the project, we included an alternate and finer definition of Curve based 
on the classification: (No, Mild, Moderate and Severe). Since the data in the 
Curve category Severe was too sparse, we combined Moderate and Severe into a 
single category, Severe.  

c) We included another alternate and finer definition of Curve classification: (No, 
Isolated, and Non-isolated). This classification is based on the following 
definitions: Isolated: (a) simple curve (only contains one curve), or, (b) there are 
long tangents (> 180 m) between curves; and Non-isolated: (a) compound curve 
(two simple curves joined together or with a short tangent and curving in the same 
direction), or, (b) reverse curve (two simple curves joined together or with a short 
tangent, but curving in opposite directions). 
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3.4 Combined Data  

The “found” data and “random” data were merged into a single database, which we refer 
to as the “combined” data, in which each record contains date, location, Volume, 
MeanFN40R, Speed Limit, Shoulder width, Curve, Slope, Intersection and Driveway, as 
well as Area type. Separate datasets for Divided roads and Undivided roads were created 
in the “found” data and the “random” data, and separate statistical analysis was carried 
out for each case. 

We noticed that on some roads, pavements had been replaced less than three years before 
the friction test date. In that case, a portion of the three year crash data period would have 
been observed on a different payment, which would introduce error into the analysis. To 
correct this, a dataset indicating the age of the pavement was consulted, and any locations 
that were repaved less than three years before the friction observation were removed from 
the data set. After this censoring, there were 424 segments in the “combined” data for 
Divided roads (for a total of 99.75 miles) and 704 segments on Undivided roads (with 
119.8 miles total road length). A summary of the continuous predictors at “found” sites, 
“random” sites and “combined” sites are shown in Table 3-9, while a similar summary for 
categorical predictors is shown in Table 3-10. The number of crashes by collision type 
and road type is given in Table 3-11. 

Speed limit and Shoulder Width match almost perfectly between the “found” sites and 
“random” sites because these variables were the criteria for identifying “random” sites. 
One reason they do not match exactly is that some roads whose pavements were replaced 
within 3 years prior to friction test date were deleted after the process of selecting 
“random” sites (as explained earlier). The variables Driveway and Intersection also match 
nearly perfectly between the “found” and “random” sites. There are more curves in the 
“found” data than in the “random” data, most likely because ConnDOT intentionally 
chose testing sites with curves. The MeanFN40R in the “found” data is about 10 units 
smaller than in the “random” data; again the reason may be that ConnDOT mainly 
focused on roads with suspected low pavement friction. 
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Table 3-9. Characteristics of Continuous Predictors at “Found”, “Random” and 
“Combined” Sites. 

 

 Divided Undivided 
  Found Random Combined Found Random Combined
 Volume 
Mean 24,984.24 29,889.16 27,575.52 8319.97 14,153.53 12,540.00
Std.Dev. 22,561.72 16,418.32 19,687.35 5657.28 7886.05 7784.75
N 200 224 424 195.00 510.00 705.00
Min 4604.00 4674.00 4604.00 1227.00 350.00 350.00
25th 10,622.75 14,947.41 10,900.00 5130.00 8086.12 6262.00
50th 165,05.00 33,345.66 21,658.00 6507.00 14,297.26 11,913.97
75th 29,376.00 381,14.93 36,856.85 10,439.45 19,651.85 17,858.36
Max 87,735.00 67,853.00 87,735.00 33,162.00 31,206.00 33,162.00
 FN40R 

Mean 37.20 46.26 41.95 33.93 48.28 44.31
Std.Dev. 10.86 7.22 10.19 9.04 8.18 10.59
N 200 224 424 195 510 705
Min 19.60 32.93 19.60 16.60 31.80 16.60
25th 25.45 40.56 36.05 25.73 72.05 37.05
50th 36.35 45.81 42.90 34.35 47.93 44.88
75th 45.43 50.80 49.45 39.75 54.23 51.84
Max 61.40 69.85 69.85 61.25 72.05 72.05
 Grade (%) 
Mean 2.39 2.4 2.4 4.64 2.7 3.24
Std.Dev. 2.11 1.84 1.75 2.81 2.29 2.59
N 200 224 424 195 510 705
Min 0.17 0 0 0.02 0 0
25th 1.1 0.85 8.66 2.37 0.77 13.29
50th 2.11 1.87 2.02 4.31 2.05 2.63
75th 3.09 3.54 3.26 6.87 4.17 4.91
Max 8.66 7.84 8.66 13.29 11.54 13.29
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Table 3-10. Characteristics of Categorical Predictors at “Found”, “Random” and 
“Combined” Sites. 

                    Divided                Undivided 

Variable Level 
Found 

(%) 
Random

(%) 
Combined 

(%) 
Found 

(%) 
Random 

(%) 
Combined 

(%) 

Speed 

25-30 0 1.43 0.71 18.55 19.08 18.90
35-40 1.48 6.07 3.80 32.34 34.46 33.73
45-50 12.45 13.37 12.90 48.9 43.02 45.04
55-65 86.07 79.13 82.59 0.21 3.44 2.33

Shoulder 

<4 1.36 12.53 6.93 19.42 13.01 15.22
4-11 25.94 21.4 23.68 65.67 55.53 59
12-19 66.30 57.68 62 13.43 26.17 21.79
>19 6.40 8.39 7.39 1.48 5.29 3.99

Curve 
Class. 1 

Yes 47.03 11.00 29.12 19.00 3.90 15.8
No 52.97 89.00 70.88 81.00 96.10 84.2

Curve 
Class. 2 

Mild * * 8.25 * * 3.83
Severe * * 12.75 * * 3.40
No * * 79.00 * * 92.77

Curve 
Class. 3 

Isolated * * 17.92 * * 5.53
Non-
isolated 

* * 3.53 * * 1.70

No * * 78.55 * * 92.77

Driveway 
Yes 0 11.40 5.68 87.80 93.40 91.48
No 100 88.60 94.32 12.20 6.60 8.52

Intersection 
Yes 0 13.98 6.97 59.65 77.46 71.33
No 100 86.02 93.03 40.35 22.54 28.67

Area Type 
Urban 11.43 39.40 25.94 9.83 42.68 31.39
Rural 88.57 60.60 74.06 90.17 57.32 68.61

* Curve classifications 2 and 3 were not calculated until after the found and random data 
had been merged, so the distributions in the sub-datasets are not available. 
 

Table 3-11. Number and Percent of Crashes by Collision Type on Divided and 
Undivided Road Segments in the Database. 

Collision Type Divided Roads Undivided Roads 
Number Percent Number Percent 

Type 1 (Segment Related) 564 31.35% 474  17.00%
Type 2 (Intersection Related) 1224 68.04% 2303  82.57%

Wet Pavement 496 27.57% 668  23.95%
Total Crashes* 1799 100.00% 2789  100.00%

*Note that the total crashes include some not classified as one of the three sub-types. 
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4 Statistical Data Analysis 

4.1 Methodology and Model Selection 

The “combined” data set (with data from “found” sites and “random” sites) was analyzed 
to determine whether or not wet pavement friction is statistically associated with collision 
incidence and also to determine whether this association is dependent upon other road 
characteristics. The Poisson, overdispersed Poisson, and Negative Binominal generalized 
linear models (GLIMs) were developed for the estimation and prediction of the counts of 
different types of crashes as the response variable: Total Crashes, Wet Pavement 
Crashes, Type 1 Crashes, and Type 2 Crashes. Some details about these distributions 
and GLIM models are given in Appendix II. We use the log link, and model ln(λi) as a 
function of explanatory variables. Here, λi = E(Yi), where Yi denote the crash count 
(response variable). The R and SAS statistical packages were used as the platforms for 
the statistical analysis.  

For each location/segment i, let SLi denote the segment length, and Volumei denote the 
volume of that segment. Both ln(SLi)  and ln(Propi) will enter the GLIM as offsets, i.e., 
they have regression coefficients set equal to 1. The variable Prop corresponds to 
“proportion”, and was introduced for the following reason. Friction tests were conducted 
on “random sites” during July and August, 2008. However, the latest crash database 
available at that time from ConnDOT only provided crash counts until June, 2008 (first 
half year of 2008). Therefore, we defined Prop as the proportion of days for which we 
have valid crash counts. For example, if a friction test is conducted at location i on July 
25th, there would be 25 days for which data on crash counts were missing; Propi is 
calculated as 

977.0
3365

253365
Pr 




iop                                (4-1) 

The values of Propi in the data for “found” sites are all equal to 1, since no crash counts 
were missing. For “random” sites, we use Equation (4-1) to compute Propi and include ln 
(Propi) as another offset in the GLIM. This method allows us to regain missing data in a 
reasonable way. Because the missed data only accounted for a small portion of the data, 
there should not be much impact on the results from the statistical analysis.  

Corresponding to each response variable, viz., Total Crashes, Wet Crashes, Type 1 crashes 
and Type 2 crashes, we model ln(λi) as 

        iiii xopSL Prlnlnln  (4-2) 

where the last term on the right side of Equation (4-2) is a condensed way to represent a 
linear function of explanatory variables and regression coefficients. The following 
predictors (explanatory variables) were input into the model for ln(λi): MeanFN40R, 
ln(Volume), Shoulder Width (4 levels), Speed Limit (4 levels), Intersection (binary), 
Driveway (binary), Area Type (binary), Curve (binary, or new classification 1 with 3 
levels, or  new classification 1 with 3 levels), Slope (continuous-valued). The fitted 
models also include interactions of these variables. In particular, we are interested in first 
order and second order interactions between MeanFN40R and variables such as Curve, 
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Driveway, Intersections, Area Type and Slope. We then selected significant predictors and 
in particular, studied the role of MeanFN40R and its interactions with other variables, on 
the expected mean crash.  

These GLIM models were fit using R (or SAS) and variable selection (via Wald tests and 
deviance difference tests) was used to find the most parsimonious model(s) with 
significant regression coefficients. In each case, the crash count was the response 
variable, SL and Prop were offsets, and the road characteristics described above were the 
predictors.  

A series of models were developed for each crash type with a combination of predictors 
as described above. In each case, the first model was a model that included all the main 
effects and the interactions between MeanFN40R and the road characteristics. The second 
model was the first model with one interaction term removed, one that is least significant. 
Similarly, interactions were removed in successive stages until only significant 
interactions remain (many models will be generated in succession). Then, we began 
removing non-significant main effects which did not appear in the remaining interactions. 
Interactions were reviewed again to see that they were still significant. If no longer 
significant, the interaction was removed, and a new model was developed. The final 
model displayed after this successive variable selection only contained significant factors. 
The best model was then selected from these adequate models, based on Akaike’s 
information criterion (AIC). Note that AIC is defined as  

   KLAIC 2ˆln2                                             (4-3) 

where ˆ( )L  is the value of the maximized likelihood for a model with K freely estimated 
regression coefficients. AIC may be used to compare nested and non-nested models. The 
model yielding the smallest value of AIC among the candidate models is selected as the 
“best model” and to be the closest to the “true” model. This process of selecting as set of 
adequate models and then selecting the best model was repeated for each crash type, 
using all the road characteristics. 

4.2 Results and Discussion 
Table 4-1 through Table 4-6 provide a summary of the coefficients and fit statistics for the 
best performing (lowest AIC) models, organized by type of road and crash type. Table 
4-1 and Table 4-2 show the models for divided and undivided roads with the original 
(binary) curve classification, respectively, for all four crash types: total crashes, type 1 
(segment-related) crashes, type 2 (intersection-related) crashes and wet pavement 
crashes. Table 4-3 and Table 4-4 show the models for the second curve classification 
scheme, “no curve, mild curve, or severe curve”, for divided and undivided roads, 
respectively, for all four crash types, and Table 4-5 and Table 4-6 show the best models 
for the third curve classification scheme, “no curve, isolated curve and non-isolated 
curve”, for divided and undivided roads, respectively, for all four crash types. These 
results are discussed in more detail in the following paragraphs.  
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Table 4-1. Models with Lowest AIC for Curve Classification 1 (Binary) on Divided Roads by Crash Type. 

Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet Crashes 
  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

(Intercept) -7.0338 < 0.0001 -5.7444 0.0008 -12.6559 < 0.0001 -10.5951 0.0002 
log(Volume) 1.0523 < 0.0001 0.8426 < 0.0001 1.6931 < 0.0001 1.3101 < 0.0001 
sw>19         0.0696 0.9182 
sw4-11         -1.2887 0.0361 
sw12-19         -0.4232 0.4439 
speed35-40     -0.9094 0.3612 2.0299 0.1357 
speed45-50     -1.8358 0.0510 1.9817 0.1647 
speed55-65     -2.2176 0.0240 0.1498 0.9155 
intersectionyes 0.9959 0.0273       
MeanSN40 -0.0306 0.0184 -0.0249 0.0245 -0.0209 0.1772 -0.0462 0.0217 
curveyes         -2.4723 0.0813 
intersectionyes     1.2268 0.0379   
drivewayyes     6.4296 0.0427   
areatypeUrban -0.9404 0.3641 -1.7110 0.1914 -3.7864 0.0101 
Slope1           
MeanSN40:curveyes         0.0676 0.0391 
MeanSN40:drivewayyes     -0.1621 0.0315   
MeanSN40:areatypeUrban 0.0544 0.0323 0.0814 0.0082 0.1044 0.0021 
curveyes:areatypeUrban         1.9402 0.0163 
  Min -1.6844   -1.4991   -1.6155   -1.5585   
Deviance Residuals 1Q -1.0788   -0.9743 -0.9172   -0.7584   
  Median -0.6229   -0.6055 -0.5317   -0.5141   
  3Q 0.1250   0.0032 -0.1058   -0.1835   
  Max 2.2140   2.4862 2.9364   2.2006   
Dispersion Parameter  0.2729   0.2976 0.2482   0.2579   
AIC 1585.30   1087.90 1230.60   812.12   
Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom 
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Table 4-2. Models with Lowest AIC for Curve Classification 1 (Binary) on Undivided Roads by Crash Type. 

Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet Crashes 
  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

Intercept -5.3837 < 0.0001 0.6904 0.4614 -7.3075 < 0.0001 -5.6689 < 0.0001 
Log(Volume) 0.9255 < 0.0001 0.1833 0.0525 1.1280 < 0.0001 0.7376 < 0.0001 
sw4-11 -0.3223 0.0145 -0.6010 0.0156 -0.6116 0.0575 
sw12-19 -0.4296 0.0056 -0.3549 0.0171 -0.3059 0.0668 
sw>19 -0.6093 0.0068 -0.3487 0.0439 -0.3764 0.0601 
speed35-40 -0.3470 0.0034 -0.4650 0.0055 -0.2842 0.0341 -0.0481 0.7517 
speed45-50 -0.9177 < 0.0001 -1.1852 < 0.0001 -0.5784 0.0006 -0.8160 0.0001 
speed55-65 -0.2485 0.3606 -1.4634 0.0033 0.1094 0.7176 -0.1937 0.5874 
Mean SN40 0.0082 0.0854 -0.0130 0.0459 0.0027 0.6127 0.0206 0.1733 
curveyes 1.1831 0.0666 1.1119 < 0.0001 -1.7884 0.0220 2.3900 0.0018 
intersectionyes     0.1226 0.2766   
drivewayyes     -0.4209 0.0042 1.2561 0.0860 
areatypeUrban 0.7923 < 0.0001 1.1631 < 0.0001 0.8938 < 0.0001 
MeanSN40:curveyes -0.0246 0.1217     -0.0433 0.0283 
MeanSN40:drivewayyes         -0.0361 0.0252 
curveyes:intersectionyes     1.1494 0.0423   
curveyes:drivewayyes     2.3896 0.0458   
MeanSN40:curveyes:drivewayyes     -0.0467 0.0678   
  Min -2.3778   -1.9075   -2.1830   -2.0073   
Deviance Residuals 1Q -1.0026   -0.7938 -0.9822   -0.8829   
  Median -0.4769   -0.4959 -0.5285   -0.4932   
  3Q 0.2091   -0.0561 0.1019   0.1279   
  Max 4.2414   4.0278 4.6723   3.4465   
Dispersion Parameter  1.1330   1.0274 0.9504   1.1102   
AIC 3000.90   1294.40 2717.70   1634.60   

Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom 
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Table 4-3. Models with Lowest AIC for Curve Classification 2 (none, mild or severe) on Divided Roads by Crash Type. 

Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet Crashes 
  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

(Intercept)   -0.8420 0.7809     -12.5458 < 0.0001 -11.4542 < 0.0001 
log(Volume)   1.0474 < 0.0001     1.5457 < 0.0001 1.4916 < 0.0001 
speed35-40           1.5396 0.2449 
speed45-50           1.1470 0.3816 
speed55-65           0.1914 0.8848 
intersectionyes   0.9913 0.0270     1.5454 0.0015     
MeanSN40   -0.1845 0.0140     -0.0239 0.1283 -0.0351 0.0441 
areatypeUrban   -1.3895 0.1930     -1.1471 0.3196 -3.3120 0.0186 
newcurve1no   -6.0033 0.0253     -0.5131 0.5470 -2.1236 0.0154 
newcurve1severe   -9.2712 0.0062     -1.7475 0.1103 -2.6914 0.0148 
Slope1   -3.0638 0.0068     -0.6995 0.0573 -1.0341 0.0091 
MeanSN40:areatypeUrban 0.0644 0.0141     0.0749 0.0079 0.1096 0.0009 
MeanSN40:newcurve1no 0.1524 0.0504           
MeanSN40:newcurve1severe 0.2269 0.0167           
MeanSN40:Slope1   0.0699 0.0410           
newcurve1no:Slope1   3.0844 0.0083     0.6690 0.0744 1.1015 0.0065 
newcurve1severe:Slope1 3.5048 0.0053     0.9830 0.0212 1.4596 0.0011 
MeanSN40:newcurve1no:Slope1 -0.0710 0.0416           
MeanSN40:newcurve1severe:Slope1 -0.0791 0.0319           
  Min -1.6945       -1.6561   -1.4372   
Deviance Residuals 1Q -1.0890     -0.8946 -0.7798   
  Median -0.6228     -0.5295 -0.4898   
  3Q 0.1450     -0.0630 -0.1738   
  Max 2.3483     2.9560 2.3059   
Dispersion Parameter  0.2853     0.2538 0.2624   
AIC   1596.50     1229.60 812.18   

Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom; the algorithm for Crash Type 1 did not converge. 
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Table 4-4. Models with Lowest AIC for Curve Classification 2 (none, mild or severe) on Undivided Roads by Crash Type. 

 Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet Crashes 
  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

(Intercept) -2.4043 0.0353 4.9082 0.0020 -7.4701 < 0.0001 -2.8981 0.0676 
log(Volume) 0.9325 < 0.0001 0.1588 0.1311 1.1478 < 0.0001 0.7382 < 0.0001 
sw>19 -0.6438 0.0044 -0.6317 0.0109 -0.6087 0.0587 
sw4-11 -0.3406 0.0099 -0.3852 0.0096 -0.2968 0.0776 
sw12-19 -0.4376 0.0048 -0.3905 0.0238 -0.3662 0.0683 
speed35-40 -0.3594 0.0025 -0.4994 0.0043 -0.2805 0.0365 -0.0471 0.7573 
speed45-50 -0.8753 < 0.0001 -1.1340 < 0.0001 -0.5698 0.0007 -0.8041 0.0001 
speed55-65 -0.1871 0.5050 -1.5020 0.0036 0.1590 0.6043 -0.2369 0.5131 
MeanSN40 -0.0730 0.0045 -0.0797 0.0039 -0.0417 0.1467 -0.0383 0.2372 
newcurve1no -3.0318 0.0014 -4.1223 0.0010 -0.0022 0.9986 -2.7593 0.0093 
newcurve1severe -2.6563 0.0758 -3.4527 0.0780 -1.2826 0.4242 -0.5020 0.7302 
intersectionyes     1.8948 0.0120   
drivewayyes     -0.3792 0.0085 1.2235 0.1005 
areatypeUrban -12.1113 0.0893 1.2783 0.1684 1.1510 < 0.0001 0.8997 < 0.0001 
Slope1     -0.1529 0.0880       
MeanSN40:newcurve1no 0.0807 0.0022 0.0695 0.0146 0.0438 0.1334 0.0580 0.0471 
MeanSN40:newcurve1severe 0.0797 0.0304 0.0715 0.0740 0.0687 0.0953 0.0220 0.5691 
MeanSN40:drivewayyes         -0.0351 0.0324 
MeanSN40:areatypeUrban 0.2814 0.0488       
newcurve1no:intersectionyes     -1.7763 0.0196   
newcurve1severe:intersectionyes     -2.1667 0.0526   
newcurve1no:areatypeUrban 12.8873 0.0711 -1.2642 0.1793       
newcurve1severe:areatypeUrban 13.6842 0.0686 -2.1498 0.0901       
newcurve1no:Slope1     0.1529 0.0882       
newcurve1severe:Slope1     0.2918 0.0268       
MeanSN40:newcurve1no:areatypeUrban -0.2804 0.0502       
MeanSN40:newcurve1severe:areatypeUrban -0.3236 0.0436       
  Min -2.3941   -1.9004   -2.1880   -2.0100   
Deviance Residuals 1Q -0.9995   -0.7842 -0.9843   -0.8810   
  Median -0.4619   -0.4959 -0.5319   -0.4929   
  3Q 0.2322   -0.0557 0.1012   0.1229   
  Max 4.2570   4.1076 4.6898   3.4487   
Dispersion Parameter  1.1554   1.1402 0.9597   1.1119   
AIC 3003.80   1299.40 2720.60   1637.70   
Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom 
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Table 4-5. Models with Lowest AIC for Curve Classification 3 (none, isolated, non-isolated) on Divided Roads by Crash Type. 

Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet crashes 
  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

(Intercept) -3.1508 0.1911 -1.3250 0.1852 -12.6999 < 0.0001 -11.0800 0.0001 
log(Volume) 0.9410 < 0.0001 5.2580 < 0.0001 1.4655 < 0.0001 1.2496 < 0.0001 
MeanSN40 -0.1181 0.0194 -2.3210 0.0203 -0.0274 0.4082 -0.0317 0.2276 
areatypeUrban -0.7093 0.5019 -0.8470 0.3968 1.9898 < 0.0001 -1.8419 0.2305 
newcurve2no -2.8004 0.1814 -2.1100 0.0349 0.9456 0.4533 0.3032 0.6787 
newcurve2nonisolated -2.7360 0.6112 -0.3560 0.7221 9.5029 0.0077 1.5815 0.4304 
intersectionyes     1.6436 0.0008   
Slope1 -1.2828 0.0554 -2.9320 0.0034 -0.6867 0.0248 -1.2642 0.0378 
sw>19         -0.0873 0.9011 
sw4-11         -1.2098 0.0542 
sw12-19         -0.5502 0.3509 
speed35-40         2.0295 0.1418 
speed45-50         2.1516 0.1331 
speed55-65         0.5157 0.7141 
MeanSN40:areatypeUrban 0.0576 0.0250 2.3190 0.0204     0.1264 0.0002 
areatypeUrban:newcurve2no     -1.9350 0.0530     -2.7144 0.0015 
areatypeUrban:newcurve2nonisolated     0.7410 0.4587     0.4824 0.8349 
MeanSN40:newcurve2no 0.0897 0.1000 2.1850 0.0289 -0.0095 0.7584   
MeanSN40:newcurve2nonisolated 0.1485 0.3357 0.7670 0.4429 -0.2287 0.0200   
MeanSN40:Slope1 0.0359 0.0304 2.9920 0.0028 0.0152 0.0291 0.0320 0.0113 
newcurve2no:Slope1 1.2214 0.0959 3.4940 0.0005     1.5575 0.0087 
newcurve2nonisolated:Slope1 2.9443 0.0686 2.2710 0.0231     2.3683 0.0579 
MeanSN40:newcurve2no:Slope1 -0.0350 0.0509 -3.6590 0.0003     -0.0391 0.0008 
MeanSN40:newcurve2nonisolated:Slope1 -0.1068 0.0473 -2.1700 0.0300     -0.0797 0.0982 
  Min -1.7071   -1.5153   -1.6861   -1.3859   
Deviance Residuals 1Q -1.1057   -0.9358 -0.8805   -0.7524   
  Median -0.6275   -0.6122 -0.5450   -0.5024   
  3Q 0.1825   0.0452 -0.0775   -0.1694   
  Max 2.7405   2.6892 2.8920   2.1446   
Dispersion Parameter  0.2783   0.3598 0.2475   0.2854   
AIC 1599.60   1088.90 1230.00   817.00   
Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom 
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Table 4-6. Models with Lowest AIC for Curve Classification 3 (none, isolated, non-isolated) on Undivided Roads by Crash Type 

Parameter 
  Total Crashes Crash Type 1 Crash Type 2 Wet Crashes 
  Coefficient P-Value Coefficient P-Value Coefficient P-value Coefficient P-Value 

(Intercept)   -5.2070 < 0.0001 1.8447 0.0401 -8.3240 < 0.0001 -2.9436 0.0339 
log(Volume)   0.9291 < 0.0001 0.1824 0.0535 1.1490 < 0.0001 0.7428 < 0.0001 
sw>19   -0.6225 0.0057     -0.6374 0.0106 -0.6023 0.0614 
sw4-11   -0.3279 0.0125     -0.3747 0.0117 -0.2964 0.0757 
sw12-19   -0.4467 0.0038     -0.3775 0.0288 -0.3762 0.0597 
speed35-40   -0.3737 0.0015 -0.4736 0.0049 -0.3116 0.0200 -0.0574 0.7059 
speed45-50   -0.9676 < 0.0001 -1.1916 < 0.0001 -0.6119 0.0003 -0.8273 0.0001 
speed55-65   -0.2920 0.2714 -1.4502 0.0037 0.0340 0.9089 -0.1840 0.6056 
MeanSN40   0.0051 0.2592 -0.0128 0.0513 0.0007 0.8941 -0.0348 0.1678 
newcurve2no   -1.1527 < 0.0001 0.9490 0.0354 -2.8744 0.0008 
newcurve2nonisolated   -0.1665 0.6945 -28.3000 1.0000 -2.8384 0.1529 
intersectionyes       1.0390 0.0507     
drivewayyes       -0.3937 0.0063 1.3780 0.0612 
areatypeUrban   0.7526 < 0.0001     1.1360 < 0.0001 0.8894 < 0.0001 
newcurve2no:intersectionyes     -0.9210 0.0898     
newcurve2nonisolated:intersectionyes     27.8500 1.0000     
MeanSN40:newcurve2no       0.0576 0.0144 
MeanSN40:newcurve2nonisolated     0.0700 0.1440 
MeanSN40:drivewayyes       -0.0386 0.0169 
  Min -2.3805   -1.9248   -2.1880   -2.0162   
Deviance Residuals 1Q -2.3805 -0.7952   -0.9861 -0.8788   
  Median -0.4702 -0.4953   -0.5338 -0.4902   
  3Q 0.1968 -0.0818   0.1331 0.1344   
  Max 4.2562 4.0307   4.7052 3.4521   
Dispersion Parameter    1.1235 1.0275   0.9488 1.1247   
AIC   3001.10 1296.20   2720.50 1636.70   
Note: * = significant at 0.1 level; ** = significant at 0.05 level; df = degrees of freedom 
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Because many of these models include interactions between the coefficient on friction 
and the various other explanatory variables, the actual association between friction and 
crashes is not readily apparent by reviewing these model results, especially when the 
coefficients on the main and interaction effects have different signs. To help with this 
interpretation, Table 4-7 through Table 4-9 show the total coefficient on the wet pavement 
friction measure (FN40R) for both divided and undivided roads with the original, second 
and third curve classifications, respectively, for each crash type and for different road 
scenarios defined by the area type (urban or rural), presence of curves, and presence of 
driveways. Then, Table 4-10 through Table 4-12 reports the exponent of these 
coefficients; these numbers are more useful as they indicate the multiplicative factor by 
which the expected crash count is predicted to change for a unit increase in the wet 
pavement friction (FN40R) measurement for each road scenario and crash type. 
Multiplicative factors greater than 1.00 indicate an increase in crashes, and factors less 
than 1.00 indicate a decrease in crashes; obviously the desired result is a factor less than 
1.00. For example, looking at Table 4-10, for total crashes on a section of a divided road 
in an urban area with a curve and a driveway, the multiplicative factor is 1.0241, meaning 
that if the wet pavement friction on such a road section were to increase by 1 unit, the 
total crash count on that section is expected to also increase by 2.41 percent. In contrast, 
the factor for the same type of road section in a rural area is 0.9698, indicating a decrease 
in the crash count by 3.02 percent. Note that many of the factors repeat from one row to 
the next; this is because many of the interactions between the corresponding road 
characteristic and the friction coefficient were not significant. The rest of this section 
summarizes the notable findings with respect to the project objectives.  

Table 4-10 gives the multiplicative factors for the original (binary) curve classification 
for divided and undivided road sections for all four crash types. Many of the interactions 
between the friction coefficient and the other road characteristics were not significant, so 
that there is not much variation in the table for some crash types. For example, the 
coefficient on friction varies on divided roads only for urban and rural roads; the results 
show that the total crashes are expected to increase by 2.41 percent in urban areas if the 
friction improves, but decrease by 3.02 percent in rural areas. On undivided roads, the 
only factor that changes the friction effect is the presence of a curve: on sections where a 
curve is present, the crash count decreases by 1.62 percent for each unit increase in the 
wet pavement friction; where there is no curve it increases by 0.83 percent. Regarding the 
situations where the total crash count is expected to increase (e.g., divided roads in urban 
areas and sections without curves in rural areas), it is important to remember that higher 
road friction facilitates not only braking, but also accelerating. In these situations, having 
higher pavement friction may facilitate drivers choosing to drive too fast for conditions. 
For type 1 (segment) crashes, greater pavement friction reduces crashes on divided roads 
by 2.46 percent and on undivided roads by 1.30 percent under all conditions. Higher 
friction reduces type 2 crashes in the vicinity of driveways under all conditions on 
divided roads – as much as 16.72 percent in rural areas, but on undivided roads, only on 
curves, and only as much as 4.31 percent. Wet pavement crashes are increased by 
improved friction under all conditions on divided roads with the exception of rural road 
sections without curves or driveways; on undivided roads they decrease everywhere 
except locations without curves or driveways.  



   

31 

Table 4-7. Total Coefficient on Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 1 (Binary). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 
 

Yes 
 

Yes 0.0238 (0.0249) (0.1016) 0.1259 

No 0.0238 (0.0249) 0.0605 0.1259 

No 
Yes 0.0238 (0.0249) (0.1016) 0.0582 

No 0.0238 (0.0249) 0.0605 0.0582 

Rural 

Yes 
Yes (0.0306) (0.0249) (0.1830) 0.0214 

No (0.0306) (0.0249) (0.0209) 0.0214 

No 
Yes (0.0306) (0.0249) (0.1830) (0.0462) 

No (0.0306) (0.0249) (0.0209) (0.0462) 

Undivided Roads 

Urban or 
Rural 

Yes 
Yes (0.0163) (0.0130) (0.0440) (0.0588) 

No (0.0163) (0.0130) 0.0027 (0.0227) 

No 
Yes 0.0082 (0.0130) 0.0027 (0.0155) 

No 0.0082 (0.0130) 0.0027 0.0206 
Note: Negative coefficients are shown in (). 

Table 4-11 shows the multiplicative factors for divided and undivided roads with Curve 
Classification 2: no curve, mild curve and severe curve. Note that the algorithm did not 
converge for estimating the model for Type 1 crashes. As for the original curve 
classification (binary), friction reduces crashes more in rural areas than in urban areas, 
especially in urban areas. On divided roads, type 2 and wet pavement crashes are reduced 
only in rural areas, by 2.46 and 3.45 percent, respectively, while they are increased in 
urban areas, by 5.24 and 7.73 percent, respectively. Total crashes on divided roads vary 
most by the degree of the curve, justifying this further categorization. Specifically, 
crashes reduce with friction the most on mild curves, by 11.32 and 16.85 percent in urban 
and rural areas, respectively. Crashes increase with friction in urban for sections with no 
curves or with severe curves, by 3.28 and 11.26 percent, respectively. In rural areas 
sections without curves show a decrease in crashes with friction of 3.16 percent and 
sections with severe curves show an increase of 4.33 percent. This is a somewhat 
counter-intuitive result; perhaps the increased friction is sufficient to assist with braking 
to avoid crashes on mild curves but on severe curves the increased friction in the vicinity 
encourages drivers to travel faster than it is safe to do so.  
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Table 4-8. Total Coefficient on Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 2 (Mild/Severe). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 
 

No 
Yes 0.0323 * 0.0511 0.0745 
No 0.0323 * 0.0511 0.0745 

Mild 
Yes (0.1201) * 0.0511 0.0745 
No (0.1201) * 0.0511 0.0745 

Severe 
Yes 0.1067 * 0.0511 0.0745 
No 0.1067 * 0.0511 0.0745 

Rural 
 

No 
Yes (0.0321) * (0.0239) (0.0351) 
No (0.0321) * (0.0239) (0.0351) 

Mild 
Yes (0.1845) * (0.0239) (0.0351) 
No (0.1845) * (0.0239) (0.0351) 

Severe 
Yes 0.0424 * (0.0239) (0.0351) 
No 0.0424 * (0.0239) (0.0351) 

Undivided Roads 

Urban 
 

No 
Yes 0.0087 (0.0102) 0.0021 (0.0154) 
No 0.0087 (0.0102) 0.0021 0.0197 

Mild 
Yes 0.2084 (0.0797) (0.0417) (0.0734) 
No 0.2084 (0.0797) (0.0417) (0.0383) 

Severe 
Yes (0.0355) (0.0083) 0.0270 (0.0514) 
No (0.0355) (0.0083) 0.0270 (0.0163) 

Rural 
 

No 
Yes 0.0077 (0.0102) 0.0021 (0.0154) 
No 0.0077 (0.0102) 0.0021 0.0197 

Mild 
Yes (0.0730) (0.0797) (0.0417) (0.0734) 
No (0.0730) (0.0797) (0.0417) (0.0383) 

Severe 
Yes 0.0067 (0.0083) 0.0270 (0.0514) 
No 0.0067 (0.0083) 0.0270 (0.0163) 

 Note: Negative coefficients are shown in (). 

*The algorithm did not converge for Crash Type 1 on divided roads. 
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Table 4-9. Total Coefficient on Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 3 (Isolated/Non-Isolated). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 
 

No 
Yes 0.0292 * (0.0369) 0.0947 
No 0.0292 * (0.0369) 0.0947 

Isolated 
Yes (0.0604) * (0.0274) 0.0947 
No (0.0604) * (0.0274) 0.0947 

Non-
Isolated 

Yes 0.0880 * (0.2561) 0.0947 
No 0.0880 * (0.2561) 0.0947 

Rural 
 

No 
Yes (0.0284) * (0.0369) (0.0317) 
No (0.0284) * (0.0369) (0.0317) 

Isolated 
Yes (0.1181) * (0.0274) (0.0317) 
No (0.1181) * (0.0274) (0.0317) 

Non-
Isolated 

Yes 0.0304 * (0.2561) (0.0317) 
No 0.0304 * (0.2561) (0.0317) 

Undivided Roads 

Urban or 
Rural 

 

No 
Yes 0.0051 (0.0128) 0.0007 (0.0159) 
No 0.0051 (0.0128) 0.0007 0.0227 

Isolated 
Yes 0.0051 (0.0128) 0.0007 (0.0735) 
No 0.0051 (0.0128) 0.0007 (0.0348) 

Non-
Isolated 

Yes 0.0051 (0.0128) 0.0007 (0.0035) 
No 0.0051 (0.0128) 0.0007 0.0351 

Note: Negative coefficients are shown in (). 
*The algorithm did not converge for Crash Type 1 on divided roads. 
 

Undivided roads have an entirely different pattern of results. For total crashes, only the 
curve severity and the setting are significant for changing the effect of friction: on 
sections in urban areas with mild curves the crashes increase with increased friction by 
23.17 percent, while they are comparatively constant with friction for sections with no 
curves and actually decrease by 3.49 percent on sections with severe curves. In contrast, 
in rural areas total crashes decrease with friction by 7.04 percent on sections with mild 
curves, but are relatively constant on other sections. For type 1 and type 2 crashes, only 
the curve severity is significant, and crashes reduce with friction the most for mild 
curves, by 7.64 and 4.08, respectively. Type 2 crashes actually increase with friction on 
sections with no curves or with severe curves, by 0.21 and 2.74 percent, respectively. For 
wet pavement crashes, the crash multiplication factor varies by both curve severity and 
presence of driveway; crashes increase with friction by 1.99 percent on section with 
neither curves nor driveways and decrease in all other conditions, with the greatest 
decrease for sections with mild curves and driveways, where the crashes decrease with 
friction by 7.08 percent. 
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Table 4-10. Ratio of Crashes to Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 1 (Binary). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 
 

Yes 
 

Yes 1.0241 0.9754 0.9034 1.1341 

No 1.0241 0.9754 1.0623 1.1341 

No 
Yes 1.0241 0.9754 0.9034 1.0599 

No 1.0241 0.9754 1.0623 1.0599 

Rural 

Yes 
Yes 0.9698 0.9754 0.8328 1.0217 

No 0.9698 0.9754 0.9793 1.0217 

No 
Yes 0.9698 0.9754 0.8328 0.9548 

No 0.9698 0.9754 0.9793 0.9548 

Undivided Roads 

Urban or 
Rural 

Yes 
Yes 0.9838 0.9870 0.9569 0.9429 

No 0.9838 0.9870 1.0027 0.9775 

No 
Yes 1.0083 0.9870 1.0027 0.9846 

No 1.0083 0.9870 1.0027 1.0208 

 

Table 4-12 shows the multiplicative factors for divided and undivided roads with curve 
classification 3 for all crash types. Again, the algorithm did not converge in estimating 
the model for type 1 crashes on divided roads. The factors for total crashes show the most 
variation, with both the setting and the type of curve being significant, with the crashes 
reducing with friction more in rural than urban areas, and on section with isolated curves 
rather than those with no curves or with non-isolated curves. The greatest reduction in 
crashes per increase in friction is 11.14 percent, for sections with isolated curves in rural 
areas, and the greatest increase is 9.20 percent, for sections with non-isolated curves in 
urban areas. The factors vary only with curve type for type 2 crashes: 3.62, 2.70 and 
22.60 percent for sections with no curve, isolated curves and non-isolated curves, 
respectively. For wet pavement crashes the factor only varies with urban and rural setting, 
with crashes increasing with friction by 9.93 percent in urban settings and reducing by 
3.12 percent in rural areas. There is very little variation on undivided roads for total, type 
1 and type 2 crashes change with friction the same for all conditions, increasing by 0.52, 
decreasing by 1.27 and increasing by 0.07 percent, respectively. For wet crashes on 
divided roads, the factors vary with both type of curve and the presence of driveway; they 
decrease in the presence of driveways and isolated curves. The greatest decrease in 
crashes with friction is 7.08 percent for sections with isolated curves and driveways, and 
the greatest increase is 3.58 percent for section with non-isolated curves and no 
driveways.  

These results are interpreted in more detail in the next section. 
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Table 4-11. Ratio of Crashes to Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 2 (Mild/Severe). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 

No 
Yes 1.0328 * 1.0524 1.0773 
No 1.0328 * 1.0524 1.0773 

Mild 
Yes 0.8868 * 1.0524 1.0773 
No 0.8868 * 1.0524 1.0773 

Severe 
Yes 1.1126 * 1.0524 1.0773 
No 1.1126 * 1.0524 1.0773 

Rural 

No 
Yes 0.9684 * 0.9764 0.9655 
No 0.9684 * 0.9764 0.9655 

Mild 
Yes 0.8315 * 0.9764 0.9655 
No 0.8315 * 0.9764 0.9655 

Severe 
Yes 1.0433 * 0.9764 0.9655 
No 1.0433 * 0.9764 0.9655 

Undivided Roads 

Urban 

No 
Yes 1.0088 0.9899 1.0021 0.9847 
No 1.0088 0.9899 1.0021 1.0199 

Mild 
Yes 1.2317 0.9234 0.9592 0.9292 
No 1.2317 0.9234 0.9592 0.9624 

Severe 
Yes 0.9651 0.9918 1.0274 0.9499 
No 0.9651 0.9918 1.0274 0.9838 

Rural 

No 
Yes 1.0077 0.9899 1.0021 0.9847 
No 1.0077 0.9899 1.0021 1.0199 

Mild 
Yes 0.9296 0.9234 0.9592 0.9292 
No 0.9296 0.9234 0.9592 0.9624 

Severe 
Yes 1.0067 0.9918 1.0274 0.9499 
No 1.0067 0.9918 1.0274 0.9838 

*The algorithm did not converge for Crash Type 1 on divided roads. 
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Table 4-12. Ratio of Crashes to Friction (FN40R) by Road Condition Scenario: 
Divided and Undivided Roads with Curve Classification 3 (Isolated/Non-Isolated). 

Setting Curve Driveway 
Total 

Crashes 
Type 1 
Crashes 

Type 2 
Crashes 

Wet 
Crashes 

Divided Roads 

Urban 

No 
Yes 1.0297  * 0.9638  1.0993  
No 1.0297  * 0.9638  1.0993  

Isolated 
Yes 0.9414  * 0.9730  1.0993  
No 0.9414  * 0.9730  1.0993  

Non-
Isolated 

Yes 1.0920  * 0.7740  1.0993  
No 1.0920 * 0.7740  1.0993  

Rural 
 

No 
Yes 0.9720  * 0.9638  0.9688  
No 0.9720  * 0.9638  0.9688  

Isolated 
Yes 0.8886  * 0.9730  0.9688  
No 0.8886  * 0.9730  0.9688  

Non-
Isolated 

Yes 1.0309  * 0.7740  0.9688  
No 1.0309  * 0.7740  0.9688  

Undivided Roads 

Urban or 
Rural 

No 
Yes 1.0052  0.9873  1.0007  0.9842 
No 1.0052  0.9873  1.0007  1.0230 

Isolated 
Yes 1.0052  0.9873  1.0007  0.9292 
No 1.0052  0.9873  1.0007  0.9658 

Non-
Isolated 

Yes 1.0052  0.9873  1.0007  0.9965 
No 1.0052  0.9873  1.0007  1.0358 

*The algorithm did not converge for Crash Type 1 on divided roads. 
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5 Summary and Conclusions 
Pavement friction is an important element for transportation safety. This study focuses on 
analysis of statistical association between friction and different types of crashes, 
controlling for pertinent road characteristics, such as shoulder width, speed limit, curves, 
intersections, driveways and area type. In particular, the objective of this project was to 
answer the following questions:  

 Is wet pavement friction a significant factor for explaining variation in crash 
history among similar locations on the road network? 

 Is this factor more relevant at locations with high expected braking frequency, 
such as sharp curves and intersections? 

The data set for analysis was combined from “found” data locations at which ConnDOT 
has previously measured the wet pavement friction, and “random” data locations at which 
the friction was measured specifically for this project. Including the random data 
locations was necessary to avoid bias in the found data due to those locations having been 
selected due to having experienced one or more crashes or the segments having been 
placed on the SLOSSS. Road characteristics, including shoulder width, speed limit, 
grade, curvature, presence of driveways and intersections and three years of crash count 
data (moderate severity to fatal crashes only) were collected and incorporated into the 
data set. Negative binominal regression was used to estimate models with coefficients for 
the main factors and interactions fitting the data. Table 5-1 summarizes the results 
qualitatively, indicating the road scenarios and crash types with the greatest expected 
relative reduction and increase. These results help to indicate where the greatest benefits 
can be achieved by correcting areas with poor road friction.  

Following is a summary of potential crash reductions focused on the presence of 
driveways and curves, the two factors that are expected to exacerbate the safety of low 
friction conditions due to increased need for braking. Note that the percentage decreases 
and increases apply only at the predicted values and would not apply indefinitely. They 
are provided as an example to show where the greatest benefits can be achieved. 

 Driveways: on undivided road sections where there is also a curve, the expected 
wet pavement crash count will decrease by 5.71 percent for each unit increase in 
the friction measurement. On all divided road sections, the expected intersection-
related crash count will reduce by 16.72 percent for each unit increase in the 
friction measurement.  

 Isolated curves: on rural and urban divided road sections, the expected total 
crash count will decrease by 11.14 and 6.86 percent, respectively, for each unit 
increase in the friction measurement. 

 Non-isolated curves: on undivided road sections, the expected intersection-
related crash count will decrease by 22.60 percent for each unit increase in the 
friction measurement. This is the largest expected decrease for any road scenario. 

 Mild curves on divided road sections: the expected total crash count on rural 
and urban road sections will decrease by 16.85 and 11.32 percent, respectively, 
for each unit increase in the friction measurement. 
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Table 5-1. Expected Crash Reduction and Increase by Crash Type and Road 
Scenario. 

Change in Crashes 
with Unit Increase 

in Friction 
Crash Type and Road Scenario 

Reduction > 10% 
 Intersection crashes on rural divided roads with driveways 
 Total crashes on divided roads with mild curves 
 Total crashes on rural divided roads with isolated curves 

Reduction between 5 
and 10% 

 Intersection crashes on urban divided roads with driveways 
 Wet pavement crashes on undivided roads with curves and 

driveways 
 Segment and wet pavement crashes on urban undivided roads 

with driveways or mild curves 
 Total, segment and wet pavement crashes on rural undivided 

roads with driveways or mild curves 
 Total crashes on urban divided roads with isolated curves 

Increase between 5 
and 10% 

 Intersection crashes on urban divided roads without 
driveways 

 Wet pavement crashes on urban divided roads without curves 
 Intersection and wet pavement crashes on urban divided roads 

Increase > 10% 
 Wet pavement crashes on urban divided roads with curves 
 Total crashes on urban divided roads with severe curves 
 Total crashes on urban undivided roads with mild curves 

 Mild curves on undivided road sections: the expected segment-related crash 
and wet pavement crash counts will decrease by 7.66 and 7.08 percent, 
respectively, for each unit increase in the friction measurement. On rural road 
sections only, the expected total crash count will decrease by 7.04 percent for 
each unit increase in the friction measurement. 

Given that operating the friction measuring equipment consumes substantial resources, 
this suggests that ConnDOT can get the most safety benefit for the investment into the 
use of the equipment by using it at these types of locations. The greatest percentage 
reductions expected are at the types of locations listed in Table 5-2 (in rank order). 

Table 5-2. Scenario and Crash Type for Top Five Expected Crash Reductions. 

Rank Road Scenario Crash Type 
Expected 
Reduction 

1 Non-isolated curves on undivided roads 
Intersection-

related 
22.60 % 

2 Mild curves on rural divided roads Total crashes 16.85 % 

3 Driveways on divided roads 
Intersection-

related 
16.72 % 

4 Mild curves on urban divided roads Total crashes 11.32 % 
5 Isolated curves on rural divided roads Total crashes 11.14 % 
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These findings confirm the hypotheses declared in the objectives: the wet pavement 
friction is most associated with crash frequency in the presence of road factors that tend 
to increase the need for unexpected braking: curves and driveways. What is interesting is 
that while we had expected that more severe and/or isolated curves might increase the 
association between wet pavement friction and crash frequency, in fact, it is on mild and 
non-isolated curves where the greatest reductions are observed. This may actually be 
more intuitive than expected. Note that on non-isolated curves it is the intersection-
related crash count that is associated. On roads with many curves, there would be less 
sight distance and thus drivers may be less prepared to brake when a vehicle exits a 
driveway or minor intersection, or slows or stops to turn off the road into a driveway or 
intersection. Regarding mild versus severe curves, it may be that drivers pay more 
attention to reduce their speeds ahead of a severe curve while not adjusting their speeds 
sufficiently for mild curves. Then when they find a need to slow down, if the friction in 
the vicinity of the mild curve is insufficient, they may be unable to slow down enough to 
avoid a collision. Consequently, it is recommended that friction measurement activities 
be focused on road sections matching the scenarios listed in Table 5-2 in order to identify 
the locations with the greatest potential safety improvements. 

Conversely, the locations with the greatest increases in crash counts related to friction are 
all in urban areas, suggesting that the wet pavement friction plays less of a role in 
improving safety in urban areas. Instead, increased friction in urban areas may actually 
induce drivers to choose speeds that are higher than what is safe for the land development 
conditions. Following are the road scenarios where increased road friction is associated 
with higher crash frequency: 

 Urban undivided roads: on sections with mild curves, the expected total crash 
count will increase by 23.17 percent for each unit increase in the friction 
measurement. 

 Urban divided roads:  

o The expected intersection-related crash count on sections without 
driveways will increase by 6.23 percent for each unit increase in the 
friction measurement. 

o The expected total crash count on section with severe curves will 
increase by 11.26 percent for each unit increase in the friction 
measurement. 

o The expected wet pavement crash count on sections with and without 
curves will increase by 13.41 and 5.99 percent, respectively, for each unit 
increase in the friction measurement. 

While some of these increases are quite large (one over twenty percent), it is not 
suggested that actions be taken to reduce the wet pavement friction under these 
conditions. Rather, these findings suggest that these are locations where there are 
inconclusive safety benefits associated with improving the wet pavement friction, so it is 
recommended that the friction measuring equipment not be used at such locations, and 
choosing any road improvement that would improve the pavement friction should be 
traded off against other potential benefits and costs. 
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In conclusion, the results reported here clearly show an association between wet 
pavement friction and crash frequency. Due to the substantial costs of operating the 
friction measuring equipment, there were a limited number of observation sites available 
to perform the analysis. Obviously, more could be learned by including additional study 
locations, but these findings are generally consistent from one model to another, and 
show that friction is indeed related to safety, in some road locations more than others. The 
locations where improving the wet pavement friction will most reduce crashes include 
sections with non-isolated curves on undivided roads and sections with driveways or mild 
curves on divided roads. The really interesting finding of an increase in crash frequency 
with increases in friction in urban areas, especially on divided roads, suggests 
reevaluating decisions to improve friction in those locations. 
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Appendix I. Technical Details of Sample Size 
Determination and Selection of Random Locations 
For sample size determination in the Poisson log-linear regression model setup, we used 
the approach in Signorini (1991) assumed count responses Yi on N individuals subject to 
exposure ti, so that λi = E[Yi ] follows  

 i
T

ii xt   0exp  (I.1) 

where β0 is the intercept, xi is a p–dimensional vector of covariates, βT = (β1,…,βp)
T is the 

corresponding p–dimensional vector of parameters, xi and ti are regarded as realizations 
of independent random variables X and T, where X ~ fX(x) and T ~ fT(t) with mean 
exposure time μT. Let b0 and b denote the respective MLE’s of β0 and β, obtained by 
maximizing the likelihood function L(β0,β). As N increases, standard asymptotic theory 
states that these converge in distribution to a multivariate normal distribution, with mean 
(β0,β

T) T = β* and variance– covariance matrix I-1, where I is the Fisher information matrix 
with elements  given for 
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The second term follows from the independence of T and X. Suppose the moment 
generating function of the covariates X is m(s) = E {exp (ST X)}. For  

i,j=1,…, p, let  
i
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,  0m = 00m =m and 0im = im0 = im  and form the 

(p+1)  (p+1) matrix M = ( ijm ).We can write  

I( 0 , )= 0exp( ) ( )TN M    (I.4) 

and the maximum likelihood estimate *̂  of *  is asymptotically, as N    , 

multivariate normal with mean *  and covariance matrix 1 1
0( ) exp( ) ( )TN M    .  

Suppose 1  is the parameter of interest, and suppose we wish to test the null hypothesis 

0H :   = N  = (0, 2 , . . ., p ) against the alternative hypothesis 1H : A  = 

(  , 2 ,… p ), at a significance level   and with power at least 1– .Assuming N  is 

large enough to apply the asymptotic results derived above, the asymptotic variance of 1


 

is given by the second diagonal term of 1I  . Routine calculation gives  
1 1
2 2 2 2

0exp( ) { ( ) ( )} /T N AN z V z V        ,  (I.5)                          

 

where 1
22( ) { ( )}V M  , the second diagonal term of  1M  , evaluated at  , and z is 

the 1–  point of the standard normal distribution.  



   

44 

Appendix II. Generalized Linear Modeling (GLIM) 
Although linear models are very versatile in many applications, there are some problems: 
restriction to normality, and the assumption of a linear model function relating the 
response to the predictors. A motivation for using GLIM is that it permits more general 
distributions than the normal for the response (McCullagh and Nelder, 1991). A link 
function is used to relate the linear model to the mean of the response variable through a 
suitable scale. We may think of GLIM as an extension of the usual normal linear models. 

The log-linear regression model is a standard model for count response data. Poisson 
regression is the most often used log-linear regression model, and allows the intensity 
(mean) parameter of the count response to depend on regressors (or covariates) via a link 
function. We usually assume that we know the parametric form of the relationship and the 
covariates are assumed fixed.  The fitting of the Poisson regression may be carried out via 
IRLS (iterative reweighted least squares) or maximum likelihood by standard statistical 
packages. 

In some cases, due to clustering of events, or some contaminating influences, there is 
variation in the responses that does not coincide with that implied by Poisson distribution.  

Suppose we fit the usual Poisson regression model to such data, the resulting fit will have 
the following problems. Although the parameter estimates are still approximately 
unbiased for the true parameters, their standard errors are smaller than they should be, so 
that tests give smaller p-values than truly possible from the data. In order to account for 
the extra variation, we include an extra overdispersion parameter into the regression 
model. When this parameter is one, the model corresponds to the usual Poisson model. 
The quasi-likelihood approach is useful for parameter estimation for the overdispersed 
Poisson model.   

Alternately, negative binomial regression is used to estimate count models when the 
Poisson estimation is inappropriate due to overdispersion, which is common for crash 
counts. In a Poisson distribution the mean and variance are equal. When the variance is 
greater than the mean the distribution is said to display overdispersion, which is 
demonstrated in our crash data. Although the overdispersed Poisson model is an option, 
the Negative Binominal model which offers better performance is assumed, and the 
probability of observing in  crashes is represented as  
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                                  (II.1) 

This formula is derived from the Poisson distribution, in which Np is the mean under a 
Poisson distribution, however, it cannot represent the crash frequency at different 
observation sites. Therefore, an error term following a Gamma distribution was 
incorporated to the average crash frequency because of the between–site variation in the 
database. After integrating on the error in Poisson distribution, the NB distribution was 
obtained in which   is the inverse of the dispersion parameter in the NB distribution.   
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