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ABSTRACT 1 

Tailpipe emissions from on-road vehicles have negative impacts on the air quality of a region 2 
and are influenced by several factors including driver behavior, road characteristics and traffic 3 
conditions. Vehicles on arterial roads typically experience frequent stops followed by 4 
acceleration events which produce more tailpipe emissions. Microscopic simulation models can 5 

generate synthetic vehicle activity which can be used to estimate emissions on a facility. For 6 
accurate estimation of the emissions from an arterial facility, it is necessary to ensure that the 7 
simulated vehicle activity closely represents field observed vehicle activity. The objective of this 8 
paper is to investigate if adjusting a selected set of simulation parameters using field-observed 9 
speed trajectories at high temporal resolution can improve the emissions estimated from 10 

simulated trajectories on a signalized arterial corridor. In this paper, simulated and field-observed 11 
speed trajectories were characterized by Vehicle Specific Power (VSP). Emissions were 12 

estimated based on VSP modal emission rates and the time spent by vehicles in each VSP mode. 13 

The emissions were compared for routes along an urban arterial and for shorter segments within 14 
each route. At both spatial scales, the emissions from parameter-adjusted simulation vehicles 15 
having the same average number of stops and travel time distribution as field-observed vehicles 16 
were closer to real-world emissions than the simulation vehicles under default model parameters. 17 

Adjusting the parameters also allowed the model to be able to capture emissions hotspots along 18 
the routes more accurately than when the parameters had default values. Currently, microscopic 19 

simulation models are calibrated based on improving traffic performance measures. The findings 20 
from this paper present the potential for additional calibration of micro-simulation models based 21 
on improving emissions estimates from simulated vehicle activity.   22 
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INTRODUCTION  1 

The transportation sector is a significant contributor to air quality problems in the United States 2 
(1). The U.S. Environmental Protection Agency (US EPA) established the National Ambient Air 3 
Quality Standards (NAAQS) for six criteria pollutants, including carbon monoxide (CO), 4 
nitrogen dioxide (NO2) (2). In 2012, 61% of the nation’s total emissions of carbon monoxide and 5 

35% of total emissions of nitrogen oxide were produced by highway vehicles (3). Given the role 6 
of mobile sources in local, regional, national and global air quality, it is imperative that the 7 
impacts of vehicle tailpipe emissions on the environment be given sufficient consideration when 8 
planning, implementing or evaluating transportation facilities.     9 

Vehicle tailpipe emissions during driving or idling after the engine has warmed up are 10 

known as running emissions (4). Running emissions are affected by several factors, including 11 
size, age, and type of vehicle, driver behavior, road infrastructure and prevailing traffic 12 

conditions (5, 6). Modern strategies to reduce vehicle emissions include improving traffic 13 

operations, reducing congestion and vehicle miles travelled and encouraging efficient vehicles 14 
(7). Microscopic traffic simulation tools produce detailed vehicle trajectories and are suitable for 15 
evaluating local or network-wide improvements in traffic control and management. Vehicle 16 
trajectories from a calibrated and validated micro-simulation model can be used as input for 17 

microscopic emissions models to estimate emissions at various levels of aggregation. Simulated 18 
vehicles exhibit choppy speed profiles with sharp accelerations and decelerations and an 19 

inclination to maximize the time spent cruising. Traffic on freeways typically experiences fewer 20 
stops, higher speeds and lower accelerations/decelerations when cruising, in contrast to arterial 21 
traffic. As a result, the emissions estimated from freeway vehicle activity are close to field-based 22 

emissions, while the same is not observed for arterial traffic (8). 23 
Existing calibration procedures are highly relevant to modeling traffic well by reducing 24 

errors in traffic performance measures in simulation. However, these procedures do not focus on 25 
reducing errors in emissions estimates from simulated vehicle activity. A comprehensive 26 

methodology driven by field data is required to calibrate and validate microscopic traffic 27 
simulation so that simulation can be used to evaluate existing traffic conditions and accurately 28 

predict the environmental effectiveness of alternative strategies. As such this paper investigates 29 
the following research questions: 30 
1. Can adjusting the internal behavioral parameters within AIMSUN micro-simulation software 31 

based on field-observed trajectories improve emissions estimates on a signalized arterial 32 
corridor? 33 

2. What metrics from simulation trajectories are most useful for estimating emissions accurately 34 

under parameters adjusted using field data 35 
3. At which level of aggregation is vehicle activity and emission estimates from field data and 36 

simulation comparable? 37 

 Route level – directional paths on entire arterial  38 

 Section level – mid-block to midblock distances, referred to as sections on each 39 
route, to capture emissions hotspots; a “hotspot” is defined as a local peak in the 40 
emissions rate per unit distance relative to upstream and downstream sections.  41 

 Second-by-second level – instantaneous vehicle activity on routes 42 
First, the existing literature on the integration of microscopic simulation tools with 43 

emissions models is reviewed. A methodology is presented to use field-observed trajectories in 44 
identifying suitable values for behavioral model parameters in AIMSUN micro-simulator for 45 
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improved emissions estimates on a signalized arterial corridor. Key results from the analysis are 1 

discussed, followed by the conclusions and recommendations for future research.  2 

 3 
BACKGROUND 4 
 5 
Macroscopic and mesoscopic traffic models are used to simulate large traffic networks and the 6 
vehicle activity produced is suitable for estimating emissions on a regional scale. The 7 
microscopic approach is more suited to operation level analysis and modeling the emissions 8 
impacts of individual vehicles, based on instantaneous speed and acceleration levels (9). 9 

 10 

Integration of Micro-simulation models with emissions models 11 
 12 

Several studies demonstrated the integration of traffic microscopic simulation models with 13 

external emissions models and the application to evaluating traffic operations. For example, the 14 
Comprehensive Modal Emissions Model (CMEM) is a microscopic modal emissions model that 15 
uses second-by-second vehicle activity data to calculate the instantaneous emissions of HC, CO, 16 
NOx and CO2 based on vehicle operating modes of deceleration, idling, acceleration and cruising 17 

(Smit et al., 2010).  An interface between the VISSIM micro-simulation model and CMEM was 18 
developed by matching vehicle types, to enable quantification and comparison of vehicle 19 

emissions for two traffic control and management strategies (10). The VISSIM model was 20 
calibrated with road infrastructure data, traffic volumes, signal timing plans and public transport 21 
line information. The integrated models were used to show that signal timing optimization 22 

improved both traffic operations and emissions. In another study, a VISSIM model was 23 
calibrated with extensive field data including turning movement counts, saturation flow rates, 24 

and spot speeds, and validated with corridor travel times. The traffic model was integrated with 25 
CMEM and VISGAOST, a stochastic signal optimization tool to minimize fuel use and CO2 26 

emissions on signalized corridors (11). Nam et al. (2003) coupled VISSIM and CMEM to 27 
investigate the relationship between emissions and driver aggressiveness. VISSIM and CMEM 28 

were also coupled to observe the changes in short-run emissions and long -run emissions due to 29 
induced demand in a network from two traffic-flow improvements (12). In both studies VISSIM 30 
was calibrated and validated with local data. 31 

INTEGRATION, a microscopic simulation and traffic assignment model and the 32 
emissions model VT-Micro, were used to compare an isolated intersection served by a traffic 33 
signal, all-way stop and two-way stop controls and a single-lane roundabout (Ahn etal. 2009). 34 

The simulation model was calibrated with field data and validated with the length of side street 35 
queues. A study combining the PARAMICS micro-simulation model with CMEM demonstrated 36 

that the Advanced Driver Alert Systems (ADAS) reduced emissions at hypothetical signalized 37 
intersections (13). CMEM and PARAMICS were coupled to investigate the impacts on vehicle 38 
emissions from Intelligent Speed Adaptation (ISA) technologies (14), High Occupancy Vehicle 39 
(HOV) lanes (15), High Occupancy Toll (HOT) lanes and uphill truck climbing lanes (16). The 40 
emissions from varying freeway speed limits in Houston, TX were investigated by combining 41 

three different emissions models with micro-scale simulation data from TRANSIMS. The 42 
authors found that under congested conditions, the MOBILE suit of models estimate lower 43 
emissions than the TRANSIMS emissions module because of being unable to capture sharp 44 
accelerations and decelerations using the average speed approach.   45 
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Emissions are sensitive to individual vehicle trajectories and the calibration of behavioral 1 

parameters that affect the second-by-second vehicle activity within the micro-simulation must be 2 
investigated. In a study to benchmark common microscopic traffic flow models, optimal 3 
parameter settings were developed using GPS data (17). Optimized model parameters in the 4 

literature included maximum velocity, accelerations, decelerations and others that control 5 
random braking behavior and time delays in driver reaction. Travel times and link speed are 6 
common measures of performance used in the optimization process (18).  7 
 8 

On-board Emissions Measurements and VSP Modal Approach 9 

Emission factors are empirical relationships between vehicle activity and resulting emissions 10 
(19). CMEM and MODEM estimate emission factors based on data from dynamometer testing in 11 
the laboratory. Although this method is considered to be accurate and highly standardized, 12 

emission factors from on-board measurement data are more representative of emissions in the 13 
field. Portable Emissions Measurement Systems (PEMS) can capture second-by-second micro-14 
scale emissions under real-world operating conditions (20, 21).  As part of previous and on-going 15 

research, NC State University has developed an extensive database of high-resolution vehicle 16 
operation and emissions measurements from PEMS equipped vehicles on pre-defined test routes. 17 

Light duty gasoline vehicles with a wide range of manufacturers, engine sizes and model years 18 
collected data on the routes, which represent alternative commutes between the same origins and 19 
destinations, covering several facility types including freeways, ramps, local and arterial streets 20 

and a range of road grades (22, 23).  21 
Second-by-second vehicle activity can be characterized by Vehicle Specific Power (VSP) 22 

and modal emission factors developed from instantaneous emissions data. VSP accounts for 23 
vehicle kinetic energy, rolling resistance, aerodynamic drag and changes in potential energy 24 

associated with road grade. Frey et al. (2002) showed that it is feasible to group instantaneous 25 
VSP into 14 discrete “bins” or “modes”. Each VSP mode is associated with an average emission 26 

rate based on dynamometer testing or field-based measurements (6). For a typical light-duty 27 
gasoline vehicle VSP is estimated as (24): 28 

      (          (   (     ( )))       )                                    29 

                           (      ) 
           (   ) 
               (    ) 
             

The US EPA’s MOVES emissions model uses VSP to determine the fraction of time a 30 
vehicle spends in 23 operating mode bins. For a given vehicle type, age and pollutant, MOVES 31 

estimates an operating mode bin average emission rate. The fraction of time and average rate for 32 

each operating mode bin summed over all bins is used to estimate average rates for a given 33 
trajectory. The emissions on one-way and two-way streets in peak and off-peak periods were 34 
compared using VISSIM-generated traffic data and MOVES (25). The PARAMICS micro-35 

simulation model was integrated with both CMEM and MOVES to investigate alternative 36 
intersection designs. CMEM and MOVES were found to produce similar estimates for NOx but 37 
widely different estimates for CO because MOVES used a more detailed modeling approach. 38 
One study integrated VSP-based emissions modeling with micro-scale vehicle activity from 39 
VISSIM to show that optimizing signal timing on a coordinated corridor and controlling traffic 40 
demand significantly reduces vehicle emissions (26). The VSP modal emissions analysis was 41 
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also used to quantify emissions at single-lane roundabouts in Raleigh, NC and Lisbon, Portugal 1 

(27).   2 
Use of VSP in estimating emissions was also demonstrated by Swidan (2011) in a study 3 

of a regional road network in North Carolina modeled in AIMSUN. That study used the modal 4 

emission factors estimated from data collected on the same road network using PEMS with the 5 
VSP distributions from AIMSUN-simulated data and found that for freeway segments, the 6 
empirical emissions and emissions calculated from the modal model were within ± 10% of each 7 
other. Emissions estimates for arterial roads differed more substantially because of greater 8 

differences in VSP distributions between simulation and real world data. Swidan (2011) (28) 9 

recommended that for evaluating emissions on arterial segments using the VSP modal approach, 10 
the internal behavioral model parameters in AIMSUN should be calibrated appropriately to 11 
generate vehicle activity that is more representative of the real world.  12 

Song et al. (2012) calibrated several behavioral parameters in VISSIM using GPS and 13 

Remote Traffic Microwave Sensors (RTMS) data from expressways in Beijing, China, 14 
including: (1) Desired Speed distribution, (2) Desired Acceleration Distribution, (3) Maximum 15 

Acceleration, (4) Desired Deceleration Distribution, (5) Maximum Deceleration, (6) Maximum 16 

Deceleration for Co-operative Braking (7) Safety Distance Reduction Factor and (8) Maximum 17 
Look Ahead Distance. They observed that second-by-second empirical vehicle activity and 18 
simulated vehicle activity from the calibrated and validated simulation model did not yield the 19 

same VSP distributions Emission rates per unit distance were calculated using MOVES. 20 
Simulation model overestimated emissions for low speed conditions by up to 248% and 21 

underestimated emissions for high speed conditions by up to 16%. It was found that these errors 22 
were systematic errors in the traffic simulation models because they remained statistically the 23 
same when a sensitivity analysis was performed on 8 parameters by increasing and decreasing 24 

their values by 10% (29). 25 

METHODOLOGY 26 

This section presents descriptions of the AIMSUN micro-simulation model, study site and field-27 
collected vehicle activity data and the methodology by which simulation parameters are adjusted 28 

using the field data. 29 

AIMSUN Microscopic Simulation Model 30 

AIMSUN is the core simulation module in the software package developed by TSS. The FHWA 31 
recommends selecting the fewest possible number of parameters for calibration and running the 32 
simulation repeatedly under calibrated values for robust results. AIMSUN has the smaller 33 
number of modeling parameters when compared to popular micro-simulation tools such as 34 

VISSIM, PARAMICS and MITSIM (30). Several sub-models make up the behavioral core 35 
models in AIMSUN,  including: (1) car-following, (2) lane-changing, (3) gap acceptance for lane 36 

changing, (4) gap acceptance for give-way, (5) overtaking, (6) on-ramp, (7) off-ramp, and (8). 37 
look-ahead. A review of the controllable parameters and their roles in AIMSUN’s internal 38 
behavioral models are summarized in Table 1.   39 
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TABLE 1 Controllable Vehicle Attributes, Local and Global Parameters in AIMSUN 

 
Attribute Values Influences Current/Default Value Unit 

V
eh

ic
le

 A
tt

ri
b

u
te

s 

Name Character string No influence - - 

Length 
Mean, deviation, 

minimum and maximum  

Influences effective vehicle length in car 

following  
4, 0.5, 3.40, 4.60 m 

Width ” No influence 2, 0, 2, 2 m 

Max. Desired Speed ” 
Car-following, lane changing, travel time, 

queue discharge 

110, 10, 80, 150 km/h 

68.4, 6.2, 49.7, 93.2 mph 

Max. Acceleration ” 
Car following, lane changing, travel time, 

queue discharge 

3, 0.2, 2.60, 3.40 m/s
2
 

6.71, 0.45, 5.82, 7.61 mph/s 

Normal Deceleration ” 
Car following, lane changing, travel time, 

queue discharge 

4, 0.25, 3.50, 4.50 m/s
2
 

8.95, 0.56, 7.83, 10.1 mph/s 

Maximum Deceleration ” Lane changing, travel time, queue discharge  
6, 0.5, 5, 7 m/s

2
 

13.4, 1.12, 11.2, 15.7 mph/s 

Speed Acceptance ” Car following, travel time, queue discharge 1.1, 0.1, 0.9, 1.3 - 

Minimum dist. between 

stopped vehicles 
” 

Influences effective vehicle length in car 

following, capacity, queue length 
1, 0.3, 0.5, 1.5 m 

Max. give-way time ” Lane changing, gap acceptance 10, 2.5, 5, 15 s 

Sensitivity Factor ” 
Deceleration component of car following; 

<1 means follower is more aggressive 
1, 0, 1, 1 

 

Minimum Headway ” Car following model v.6 0, 0, 0, 0 s 

Overtaking to stay on fast lane ” Lane changing, overtaking 0 % 

Undertaking cases ” Lane changing, overtaking 0 % 

Imprudent lane changing cases ” Lane changing, overtaking 0 % 

Sensitivity for Imprudent lane 

change 
” Lane changing, overtaking 1 - 
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TABLE  1 Continued from previous page 

L
o

ca
l 

P
ar

am
et

er
s 

(a
rt

er
ia

l 
se

ct
io

n
s)

 
Section speed limit Single value Car following, lane-changing 

57 km/h 

35 mph 

Lane speed limit ” Car following, travel times - km/h 

Turning speed ” 
Car following, Influences turning capacity, 

travel times 
- km/h 

Visibility distance at Junctions ” Give way 25 m 

Yellow Box Speed  ” 

Speed of a vehicle approaching a yellow box 

junction will depend on whether leader 

vehicle is below this speed; junction capacity 

10 km/h 

6.2 mph 

Distance Zone 1 (distance to zone 

where overtaking can occur) 
” 

Lane Changing model, turning proportions, 

blocking situations 

388.89 m 

Distance Zone 2 (distance to zone 

where vehicles look for a gap to 

closer to the correct side of the road 

from which the turning movement 

can be completed.) 

” 58.33 m 

Time Distance On-ramp ” On-ramp model, on-ramp capacity 97.22 m 

Section slope ” Acceleration in car-following model 0 
 

Maximum Give Way Time 

Variability 
” Gap acceptance/give way 0 s 

Reaction Time Variation 
Absolute 

integer 
Local variation of reaction times 0 s 
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TABLE 1 Continued from previous page 

G
lo

b
al

 P
ar

am
et

er
s 

No. of vehicles Single value 2-lane car following model 4 veh 

Maximum Distance ahead ” 2-lane car following model 100 m 

Maximum Speed Difference ” 2-lane car following model 50 km/h 

Maximum Speed Difference On-

ramp 
” 2-lane car following model 70 km/h 

Percent overtake ” lane-changing model 90 % 

Distance zone variability ” lane-changing model 40 % 

Percent recover ” lane-changing model 95 % 

Road side of vehicle movement ” lane-changing model left 
 

Simulation step 
Single value between 0.1  

and 1.5 seconds 

Updating of unconditional events 

scheduling list (e.g. signal phases) 
1.00 s 

Reaction Time 

Single value (can be 

"fixed" if equal to 

simulation time step or 

"variable" for a vehicle 

type using a discrete 

probability model) 

All internal models, section and on-

ramp capacities 
1.00 s 

Reaction Time at Stop 
Single value - fixed or 

variable 

Affects all internal models, stop and 

go capacity, queue measures 
1.35 s 

Reaction time for front vehicle at 

traffic light 
” Affects all internal models 1.35 s 

Queue up speed Single value Queue measures 1.00 m/s 

Queue leaving speed ” Queue measures 4.00 m/s 
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According to Table 1, many of the controllable parameters affect the car following and 1 

lane changing models in AIMSUN. The position and speed of every vehicle in AIMSUN is 2 
updated after checking for lane-changing decisions and applying the Gipps car-following model 3 
(31). The Gipps car-following model places limits on the driver’s braking ability to maintain a 4 

safe distance from the preceding vehicle (32). The model has two components. The first controls 5 
the acceleration of the follower vehicle when it is not affected by the leader, such as under free-6 
flow conditions. The follower accelerates, but as it approaches the maximum desired speed, its 7 
acceleration decreases to zero (30). The second component of the Gipps model sets constraints 8 
on the speed of a vehicle in the next time step by considering the effect of its leader, which 9 

becomes important in congested situations. Since the VSP-based emissions model is highly 10 
dependent on the instantaneous speed and acceleration of vehicles, the following parameters 11 
which appear in the car following model were selected for investigation: 12 

1. Maximum desired speed 13 

2. Maximum desired acceleration 14 
3. Normal deceleration 15 

The maximum desired speed and acceleration are the highest speed and acceleration a 16 
vehicle can travel at any point and time in the network. The normal deceleration is the highest 17 

deceleration rate that a vehicle can achieve under normal circumstances (31). It is different from 18 
maximum deceleration, which occurs during severe braking.  19 

As shown in Table 1, the selected parameters influence the AIMSUN car following and 20 

lane changing models as well as the travel time and queue discharge behavior in the network. 21 
Although other parameters such as the “Speed Acceptance”, which affect the car following 22 

algorithms, could also be adjusted, the data required is beyond the scope of this research. 23 

Therefore, these parameters are left with AIMSUN default values. 24 

Study Site  25 

The study site is a 2 mile-long stretch of arterial corridor on Hillsborough Street, in Raleigh, NC. 26 
Hillsborough Street runs in east- and westbound directions between downtown and Interstate-40, 27 

serving 15,000 vehicles per day (33). The selected corridor begins in the area adjacent to NC 28 
State University’s main campus and continues to the west to the I-440 entry/exit ramps.  While 29 
Hillsborough Street carries commuter traffic to and from downtown and the interstate, it also 30 

serves local traffic generated by the university, supporting commercial establishments and 31 
residential neighborhoods. There are 14 coordinated signalized intersections. Several 32 

intersections are concentrated in the eastern end of the corridor with inter-signal distances 33 
between 270 and 1,825 feet.  34 

Two routes were defined in the study site: (1) Hillsborough Westbound and (2) 35 
Hillsborough Eastbound. Hillsborough Westbound begins just before the intersection with 36 

Enterprise Street and continues to the on-ramp to I440 East. Hillsborough Eastbound begins after 37 
the off-ramp from I-440 and ends just past the intersection with Enterprise Street. Through traffic 38 
on Hillsborough Street is served by single lanes towards the eastern end of the corridor, and by 39 

dual lanes in the western end. A schematic of this corridor, modeled in AIMSUN, is shown in 40 
Figure 1.  41 
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 1 

FIGURE 1 Schematic of the Hillsborough Street arterial corridor in AIMSUN 2 

 3 

Field Data 4 
  5 
Second-by-second vehicle activity and location data of 53 PEMS-equipped vehicles were 6 

extracted from the NCSU vehicle emissions database. All vehicles were either passenger cars or 7 
passenger trucks, tested between 2010 and 2012 and driven by different drivers.  The ages of the 8 

vehicles ranged from 0 to 14 years at the time of testing. The engine displacements were between 9 
1.4L and 5.4L. The gross weight of the vehicles ranged from 1,720 lbs to 7,400 lbs. The mileage 10 

accumulated by the vehicles was between 615 miles and 282,206 miles.  11 
Due to the nature of the traffic near the NC State University campus, the afternoon peak 12 

hour was defined as 4.30 to 6.00pm and the off peak periods were defined between 1.00 to 13 

4.30pm and 6.00 to– 8.30pm. Although all 53 vehicles completed the two routes on Hillsborough 14 
Street, trajectories that did not occur in the afternoon (peak/off-peak), or had missing data points 15 

were not selected for the analysis. A total of 86 complete field trajectories from both routes were 16 
extracted by matching the OBD data with location data from the GPS units. The field trajectories 17 
in the Hillsborough Westbound direction in the afternoon off- peak hour are plotted in Figure 2 18 

to observe speed changes on the corridor under uncongested conditions.   19 
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 1 

 2 

FIGURE 2 Twenty field observed vehicle trajectories in the Hillsborough Westbound route 3 

during the afternoon off-peak period 4 
 5 
Vehicle travel on the selected corridor is characterized by frequent stops associated with 6 

signalized intersections. For the portion of the corridor immediately adjacent to the NCSU 7 

campus from 0.0 to 0.6 miles distance, most have only one through lane in each travel direction 8 

and is divided by a median. With a few exceptions the peak travel speed for this portion is 9 
typically 30mph over the first 0.4 miles, increasing to 35mph up to 0.6 miles. After clearing an 10 
intersection at 0.8 miles the peak speeds increase to approximately 45mph. On the latter portion 11 

of the route, there are two through lanes in each direction and no median. Although the posted 12 
speed limit for the latter portion of the corridor is mostly 35mph, the desired speed is clearly 13 

higher. Therefore in AIMSUN the arterial speed limit was set at 45mph rather than the city-wide 14 
35mph limit. 15 

 16 

Adjustment of Simulation Parameters 17 

Measurements from the selected field trajectories were used to adjust the values of the relevant 18 

parameters in AIMSUN. The selected AIMSUN parameters are specified in terms of truncated 19 
normal distributions (31). The values for each parameter are sampled from the distribution for 20 
each vehicle that enters the network. Three sets of parameter values were defined to check which 21 

set allowed emissions estimates from simulation trajectories to be closest to field trajectories. 22 
The following sets of values of each parameter were obtained: 23 

1. Maximum values – the maximum instantaneous (based on 1Hz data) speeds, 24 
accelerations and decelerations from each directional vehicle trajectory  25 

2. 95
th

 percentile values – the 95
th

 percentile instantaneous accelerations and decelerations 26 
from each directional vehicle trajectory  27 

Intersections 
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3. 85
th

 percentile values – the 85
th

 percentile accelerations and decelerations from individual 1 

directional trajectories in the study area.  2 
It was assumed that the maximum speeds from empirical data sufficiently represent the 3 

maximum speeds desired by drivers on the arterial under normal circumstances, while maximum 4 

accelerations or decelerations may include events under non-normal circumstances. Therefore, 5 
no distributions of 95

th
 and 85

th
 percentile maximum desired speeds were defined.  The 6 

distributions were truncated at the maximum and minimum values observed in the field for each 7 
parameter.  The mean and standard deviations are associated with the normal distribution of 8 
parameters prior to truncation.  9 

The observations were categorized into peak or off-peak periods in which the respective 10 
trajectories occurred. Kolmogorov-Smirnov (KS) tests showed no statistically significant 11 
differences between the parameter distributions in the two time periods (peak/off-peak). 12 
Therefore all 86 trajectories were combined to generate distributions of each parameter value. 13 

The truncated normal distributions of the parameters are shown in Figure 3 in comparison to the 14 
AIMSUN default distributions. Figure 3 also shows cumulative distribution functions confirming 15 

that overall the truncated normal parameter distributions represent the distributions of the actual 16 
field observations reasonably well.  17 
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(a) Maximum desired acceleration distributions 
( b) Cumulative probabilities for maximum desired 

accelerations (truncated normal distribution vs. empirical) 

 
 

(c) Normal deceleration distribution  
( d) Cumulative probabilities for normal deceleration 

(truncated normal distribution vs. empirical) 

 
 

(e) Maximum desired speed distribution  
( b) Cumulative probabilities for maximum desired speed 

(truncated normal distribution vs. empirical) 

 

 

 1 

FIGURE 3 Truncated Normal Distributions and Cumulative Distribution Functions of 2 
AIMSUN Default, PEMS Maximum, PEMS 95

th
 Percentile and PEMS 85

th
 Percentile 3 
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Matching Field and Simulated Trajectories 1 
 2 
As an initial assessment of parameter distributions, the AIMSUN simulation was adjusted with 3 
the PEMS maximum, 95

th
 and 85

th
 percentile accelerations and decelerations. The speed 4 

distribution was kept at PEMS maximum values across all simulation runs. The network was 5 
loaded with traffic in the afternoon peak hour and simulated for one hour. Second-by-second 6 
vehicle trajectories can be extracted from AIMSUN using Application Programming Interface 7 
(API) tool. Trajectories with space mean speeds within a range of 10 km/h can be grouped 8 
together (34). For initial assessment of the calibration parameters, emissions estimates from 9 

simulated and empirical trajectories which are within a ± 2.5 mph of average space mean speed 10 
were compared. Four simulated trajectories and four empirical trajectories in the westbound 11 
direction were extracted to cover a range of travel times. Each empirical and simulated trajectory 12 
is characterized by the instantaneous speeds and accelerations of a real or simulated vehicle as it 13 

traverses the corridor. 14 
For both empirical and simulated trajectories, the second-by-second vehicle activities 15 

were characterized in terms of VSP distributions. A set of fleet average modal emission factors 16 
was developed from same PEMS database maintained by NC State University (21) and can be 17 

found elsewhere in literature (Anya et al., 2013). The fleet average modal emission factors were 18 
used to compute route-level emissions for each trajectory. The maximum desired speed, 19 
maximum desired acceleration and normal deceleration in simulation were adjusted with four 20 

sets of parameter values – (1) AIMSUN default values, (2)  maximum values from PEMS 21 
trajectories (3) 95

th
 percentile values from PEMS trajectories and (4). 85

th
 percentile values from 22 

PEMS trajectories.  The initial route-level emissions analysis of trajectories selected under each 23 
of these four sets of parameter values produced different emissions per unit distance. The set of 24 
parameter values under which a simulated trajectory produced emissions estimates closest to 25 

field-based emissions estimates was investigated further. To assess the context in which 26 

emissions estimates can be accurately estimated from simulated vehicle activity, the VSP modal 27 
analysis was performed at the route level and at the section level for 13 sections (mid-block to 28 
mid-block lengths) within the Hillsborough Westbound route. Under the simplified assumption 29 

that VSP is most sensitive to the product of speed and acceleration, a detailed look was taken at 30 
the second-by-second speed-acceleration pairs from vehicle activity. The effect of road grade 31 

was not relevant since the study site is on relatively flat terrain. The second-by-second level 32 
analysis was used to investigate the differences in the distribution of accelerations 33 

(positive/negative) between the empirical and simulated data under adjusted parameters in 34 
10mph speed bins. The 10mph speed bins allowed for differences in accelerations to be observed 35 
across low speeds and high speeds separately. 36 

For the detailed analysis of the impact of matching simulated and real-world travel times 37 

and number of stops on the emissions from samples of 30 simulated trajectories, three samples 38 
were selected based on matching (1) travel time distribution, (2) average number of stops and (3) 39 
both travel time distribution and average number of stops from sample of field-observed 40 

trajectories. It was assumed that 30 trajectories provided a large enough sample size to detect 41 
The travel time distributions of selected simulated vehicles and all empirical trajectories on a 42 
route were matched using the concept of Latin Hypercube Sampling which ensures that a range 43 
of values of a selected variable is represented in the sampled set (35). 44 

According to Rakha & Ding (2003), the aggressiveness of a vehicle stop in terms 45 
acceleration or deceleration, has significant impact on tailpipe emissions, especially for 46 
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pollutants such as HC and CO. Accelerations associated with several stops can increase 1 

emissions on the route. A complete stop was defined as a cycle of decelerating to below 5 mph 2 
followed by accelerating above 15 mph. The average number of stops was counted from the field 3 
trajectories and a sample of 30 simulated trajectories was selected to match the field-observed 4 

average number of stops. The third sample from AIMSUN simulation was selected to reflect 5 
both the field-observed travel time distribution and average number of stops. 6 

 7 

Results and Discussion 8 

This section presents results from the initial assessment of adjusting simulation parameters 9 
followed by detailed analysis of emissions from vehicle activity simulated under the most 10 

suitable set of parameter distributions. 11 

 12 

Initial Assessment of Parameter Distributions 13 
 14 
Table 2 shows results of the initial assessment of parameter values. AIMSUN default and PEMS 15 
maximum parameter values produced higher absolute percentage differences from the route-level 16 
empirical emission rates of CO2 per unit distance across the travel times. Similar trends are found 17 

but not reported for the emission rates of NO, HC and CO. The simulated vehicles with 85
th

 18 
percentile parameter distributions produced estimates with lowest errors rates.  19 
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TABLE 2 Selected Route-level CO2 Emission Rates per unit Distance from Empirical Data 1 

and Simulation Based on Different Parameter Distributions 2 

   
% Difference (Simulated vs. Empirical) 

Travel time (min) 
 

Empirical 

(g/mi) 

AIMSUN 

Default 

PEMS 

Max. 

PEMS 

95
th

 %ile 

PEMS 

85
th

  %ile 

Low 

(Empirical: 4.67; AIMSUN 

Default: 4.68; PEMS Max.: 

4.83; PEMS 95
th

 %ile:4.77; 

PEMS 85
th

 %ile:4.98) 

Rate 304 394 406 368 362 

% ∆*  29% 33% 21% 19% 

Intermediate 

(Empirical: 5.42; AIMSUN 

Default: 5.43; PEMS Max.: 

5.57; PEMS 95
th

 %ile:5.23; 

PEMS 85
th

 %ile: 5.28) 

Rate 379 410 437 387 405 

% ∆*  8% 15% 2% 7% 

Intermediate 

(Empirical: 5.75; AIMSUN 

Default: 5.68; PEMS Max.: 

5.77; PEMS 95
th

 %ile:5.75; 

PEMS 85
th

 %ile: 5.75) 

Rate 384 436 450 431 416 

% ∆*  13% 17% 12% 8% 

High 

(Empirical: 7.80; AIMSUN 

Default: 7.13; PEMS Max.: 

7.15; PEMS 95
th

 %ile:7.15; 

PEMS 85
th

 %ile: 7.47) 

Rate 431 527 512 473 457 

% ∆*  22% 19% 10% 6% 

*Percent difference between empirical and simulated emissions calculated as: 
                   

         
      3 

The 85
th

 percentile parameters yield the closest emission rates to field-based rates. To 4 
investigate if this is a result of more realistic vehicle activity, the range of the distributions of 5 
PEMS maximum, 95

th
 and 85

th
 percentile and AIMSUN default values and their relative 6 

positions are superimposed on the cumulative distributions of all instantaneous accelerations and 7 
decelerations from 86 empirical trajectories in Figure 4. There is a clear indication that 85

th
 8 

percentile parameters do not account for 5% of the high accelerations observed in field data. 9 

While the 85
th

 percentile distribution is more representative of accelerations and decelerations 10 
observed in the field, sampling from it may limit the maximum accelerations or decelerations 11 
achievable in simulation. For example, 85% of the accelerations observed in field data are below 12 

2.5 mph/s (which is the mean value of the 85
th

 percentile accelerations); if a vehicle entering the 13 
simulated network has a maximum achievable acceleration of 2.5 mph/s it cannot exhibit any 14 
instantaneous accelerations greater than 2.5 mph/s when travelling unconstrained below the 15 
speed limit. This is not a realistic scenario.  16 

Conversely, both AIMSUN default accelerations and decelerations would be observed in 17 
less than the highest 1% of empirical accelerations and decelerations. The range of the PEMS 18 
maximum parameters is the largest among the distributions considered. However, most of the 19 
PEMS maximum observations appear in 10-15% of the empirical data. These observations 20 
suggest that using the PEMS maximum accelerations may not allow simulated vehicle activity to 21 
follow empirical vehicle activity closely. Therefore the 95

th
 percentile values of 22 
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acceleration/decelerations and PEMS maximum speeds were selected for the set of adjusted 1 

parameters. 2 

 3 

 4 
(a) Cumulative Distribution function of empirical instantaneous accelerations in mph/s 5 

 6 
(b) Cumulative Distribution function of empirical instantaneous decelerations in mph/s 7 

FIGURE 4 Relative positions of the range and mean values of empirical maximum, 95th 8 
percentile, 85th percentile and AIMSUN default parameter distributions  9 
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Route-level Analysis with 95
th

 Percentile Parameter Distributions 1 

Table 3 shows that when the simulated sample under of trajectories was chosen based on having 2 
both the same travel time distribution and average number of stops as field trajectories, the 3 
emissions estimates was closer to the field-based estimates across all pollutants, than when only 4 
the travel time distribution was controlled. The differences in emissions of CO2 and HC per unit 5 

distance were below 5%, while difference in estimates of NO and CO were at or below 15%. 6 
Only the estimation errors for NOx were statistically significant. The average number of stop 7 
controlled trajectories produced lower emissions estimates than the field-based sample.  The 8 
average travel time of the stop-controlled sample was much lower than the average field-based 9 
travel time. Comparisons of the average travel times and average number of stops between 10 

randomly selected simulation samples of 30 trajectories indicated a positive correlation between 11 
the average number of stops and average travel time. Field-collected sample of trajectories has 12 

high average travel time, but low average number of stops. Therefore, to match the average 13 

driving cycle in simulation with the average driving cycle in the field, it is necessary to control 14 

for both the travel time and the average number of stops in the simulated sample. 15 

TABLE 3 Summary route-level emissions on Hillsborough Westbound route from 16 

calibration of AIMSUN model and sample selection 17 

Sample  
NO (mg/mi) 

(Std. Error) 
HC (mg/mi) 

(Std. Error) 
CO (mg/mi) 

(Std. Error) 
CO2 (g/mi) 

(Std. Error) 

Field Data 

(30 trajectories) 
Rate 

153 

(9) 

111 

(5) 

894 

(59) 

420 

( 18) 

AIMSUN Default 

(30 trajectories) 

Rate 
221 

(4) 

128 

(3) 

1285 

(25) 

485 

(11) 

% Diff. 45% 15% 44% 16% 

Calibrated (Travel 

time distribution 

controlled) 

(30 trajectories) 

Rate 
183 

(3) 

118 

(2) 

1031 

(20) 

448 

(9) 

% Diff. 20% 6% 15% 7% 

Calibrated (Avg. no 

of stops controlled) 

(30 trajectories) 

Rate 
145 

(7) 

91 

(5) 

793 

(37) 

346 

(19) 

% Diff. -5% -18% -11% -17% 

Calibrated (Travel 

time distribution and 

avg. no of stops 

controlled) 

(30 trajectories) 

Rate 
176 

(3) 

115 

(2) 

990 

(19) 

436 

(6) 

% Diff. 15% 3% 11% 4% 

*Bolded figures indicate differences that are statistically significant at the 5% significance level 

 18 

Section-level Analysis 19 

The results from the section-level VSP modal emissions analysis are consistent with the route-20 
level results. Under default parameter values, several of the section-level estimates are farther 21 
from the field-based estimates than the two samples with adjusted parameters. The emissions of 22 

NO, HC, CO and CO2 per unit distance from the simulated sample with the same travel time 23 
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distribution and average number stops as field-tested vehicles, are lower at 2 of the 13 sections, 1 

than the travel time distribution controlled sample. The same emissions hotspots are captured or 2 
missed by both the samples from simulated data. Where the intersections are closely spaced, both 3 
simulation samples with adjusted parameters are unable to detect the locations of the emissions 4 

hotspots. 5 

 6 

Second-by-second Level Analysis 7 

The distributions of accelerations (positive/negative) in 10 mph speed bins for the travel-time 8 
controlled simulated sample and field data are shown in Figure 5. KS-tests confirm that the 9 
distributions of accelerations within each speed bin from field and simulated data are different. 10 

Between 0 to 10mph, 30 to 50mph, a higher proportion of accelerations of simulated vehicles is 11 
low and has less variability than vehicles in the field. For the speed bins 10 to 20mph and 20 to 12 

30mph, the distributions of positive and negative simulated accelerations are bi-modal in nature. 13 

The speed bin 10 to 20 mph reflects stop and go motion.  The simulated deceleration behavior in 14 
this speed bin appears to be very close to what is observed in the field. The field data shows a 15 
higher proportion of observations with lower acceleration values than the simulated data. 16 
Between 20 to 30 mph, the field data is uni-modal, centered around low 17 

accelerations/decelerations, but with some spread in the data. The simulated data shows that 18 
most of the accelerations and decelerations are at the boundary values of the 95

th
 percentile 19 

parameter distributions set for the simulation.  20 
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  (a). 0 – 10 mph                                                (b). 10 – 20 mph 

  
(c). 20 – 30 mph                                            (d). 30 – 40 mph 

 

 

(e). 40 – 50 mph 

 

FIGURE 5 Distribution of empirical and simulated accelerations in 10mph speed bins 
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CONCLUSIONS 1 
 2 
Under the default parameters within the AIMSUN software package, simulated vehicle activity 3 
from a signalized arterial corridor at the micro-scale is not representative of real-world vehicle 4 

activity. This research showed that adjusting the parameters of the car following model using 5 
field data generates more realistic vehicle activity on arterial segments and improves emissions 6 
estimates. The truncated normal distributions of three simulation parameters – maximum desired 7 
speed and acceleration and normal deceleration – were defined using 95

th
 percentile values from 8 

each vehicle trajectory along the routes followed in the field. The resulting vehicle behavior was 9 

more realistic because the accelerations and speeds are constrained to the range of values 10 
observed in the field.  11 

Route-level emissions estimates are sensitive to both average number of stops and travel 12 
time distribution along a route. Matching these factors simultaneously with field-observed 13 

trajectories yielded better estimates of emissions from simulation. When a sample of 30 14 
trajectories from the default AIMSUN model had the same travel time distribution as field 15 

observed trajectories in on the Hillsborough Westbound route, the emissions of NOx, HC, CO 16 
and CO2 differed by 45%, 15%, 44% and 16% from the respective field based estimates. Under 17 

calibrated parameters, a sample of 30 trajectories lowered the errors in estimates to 20%, 6%,  18 
15% and 7% for emissions per unit distance of NO, HC, CO and CO2. For a sample based on 19 
matching average number of stops observed in field trajectories, the emissions estimates were 20 

lower than field-based estimates by up to 18% for HC and 17% for CO2. A sample of 30 21 
simulated trajectories with the same travel time distribution and average number of stops as field 22 

trajectories resulted in emission rates of NOx, HC, CO and CO2 having differences of 15%, 3%, 23 
11% and 4% with the field-based estimates respectively. These errors are lower than the other 24 
two samples and are statistically insignificant for all pollutants except NOx.  25 

Section level analysis showed that the emissions hotspots along the route were not 26 

effectively captured by the parameter-adjusted model on the Hillsborough Westbound route. 27 
However, it produced estimates that were closer to the empirical emission rates at the section 28 
level, than the default model. This indicates that although parameter adjustment improves the 29 

emissions estimates at the route level, at smaller spatial scales the estimates may not be accurate.  30 
An investigation of the second-by-second speed and accelerations from simulated and 31 

field data showed systematic differences in the distribution of positive and negative accelerations 32 
between simulated and field data. In low speed bins of 0–10mph or 10– 20mph, the differences 33 

in the distribution of simulated and field-based accelerations are less pronounced than in the 34 
speed bin of 20–30mph. In the 20–30mph bin, the simulated accelerations and decelerations are 35 
higher, implying that vehicles travelling at speeds within the bin are accelerating to higher 36 
speeds at or close to their maximum desired rate. Conversely, the field vehicles do not accelerate 37 

or decelerate at high rates while travelling between 20–30 mph. Adjusting of car following 38 
model parameters reduces the magnitude of the accelerations or decelerations observed in 39 
simulated data, but the trajectories still exhibit sharp acceleration and decelerations compared to 40 

smoother field trajectories; this is a limitation of AIMSUN. More realistic values of acceleration, 41 
deceleration and speeds on the arterials lead to better estimates of emissions at the route level. 42 

A key recommendation is that further investigation be done to ensure that trajectory 43 
travel times and average number of stops observed in the field are reflected in all simulated 44 
trajectories under adjusted parameters. The parameters associated with the other sub-models in 45 
AIMSUN such as the gap-acceptance model, may be adjusted to continue the efforts to match 46 
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simulated vehicle activity with real-world activity. Following the presented parameter 1 

adjustment and emission estimations, simulated trajectories from AIMSUN can be used 2 
effectively to test the impacts on local air quality of traffic management strategies at the route 3 
level on signalized arterial corridors.  4 

 5 
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