ROCKY MOUNTAIN NATIONAL PARK: 3 YEARS OF ITS

Natalie Villwock-Witte, Ph.D., P.E. (Corresponding Author)
Assistant Research Professor/Research Engineer
Federal Lands Transportation Institute (FLTI)
Western Transportation Institute (WTI) at Montana State University (MSU)
P.O. Box 174520
Bozeman, MT 59717-4250
Phone: 505-340-3570
Fax: 406-994-1697
Email: Natalie.Villwock-Witte@coe.montana.edu

Jaime Eidswick
Research Engineer
FLTI
WTI at MSU
P.O. Box 174520
Bozeman, MT 59717-4250
Email: Jaime.Eidswick@coe.montana.edu

Laurie Miskimins
Transportation Planner
Central Federal Lands Highway Division
Federal Highway Administration
Email: Laurie.Miskimins@dot.gov

November 2014

Word Count: 4,741 Words + 3 Tables (750 Words) + 7 Figures (1,750 Words) = 7,241 Words

Key Words: intelligent transportation systems, ITS, dynamic message signs, DMS, highway advisory radio, HAR, National Park, surveys
ABSTRACT

In 2011, Rocky Mountain National Park, in collaboration with the Town of Estes Park, had its first experience with an intelligent transportation system primarily to address crowding in the 1) Bear Lake Road corridor within Rocky Mountain National Park and 2) Town of Estes Park. Rocky Mountain National Park and the Town of Estes Park continued to use intelligent transportation system components in 2012 and 2013; however during these years, in addition to addressing crowding, the system was intended to inform visitors of the construction within the Bear Lake Road corridor. Evaluations were performed each year to provide other practitioners information on the effectiveness of ITS tools deployed in managing visitors through recreational areas. This paper discusses: a short history of intelligent transportation systems in national parks; characteristics of the intelligent transportation system deployments for Rocky Mountain National Park and the Town of Estes Park for 2011, 2012, and 2013; findings as a result of evaluations performed each year; and overall findings. Overall findings include 1) the most effective use of the dynamic message signs is on US 36, 2) the dynamic message signs have a significant impact on the use of the Fairgrounds Park-n-Ride, 3) static signage is an important last-link, 4) Fairgrounds Park-n-Ride users return in subsequent years, 5) the Fairground Park-n-Ride is capturing mostly day visitors, and 6) passive surveys were more effective at the Fairgrounds Park-n-Ride than at the Estes Park Visitor Center.
1. INTRODUCTION

Rocky Mountain National Park (ROMO) is located northwest of Denver, Colorado. The highest national park in the United States, with more than sixty peaks above 12,000 feet, the headwaters of the Colorado River, and ecosystems ranging from montane to alpine tundra and glaciers; ROMO attracts a wide variety of outdoor enthusiasts. While a large portion of visitors are repeat residents from the cities and towns between Denver and ROMO, it also attracts many United States and international visitors.

Vistiation to ROMO averages over 3 million people annually. ROMO is challenged with maintaining access while at the same time ensuring that the visitor experience and resources do not degrade. The primary problem is congestion along the Bear Lake Road corridor within ROMO and on the main arterials in the Town of Estes Park (TOWN) (FIGURE 1).

Previous studies have recommended that ROMO deploy an intelligent transportation system (ITS) to encourage use of the shuttles to access the park (1). In particular, the results suggested that, “If visitors are informed via ITS early in their trip process, they will be able to prepare and make informed decisions about appropriate modes of travel.” These studies have recommended potential messages for an ITS including, “Park here and ride the free park shuttle bus.”

Therefore, in 2011, ROMO in cooperation with the TOWN, piloted their first ITS with the goal of reducing congestion in these areas. The objective was to direct visitors to shuttles at the Fairgrounds Park-n-Ride (PNR) lot off of US 36 using the ITS, thereby intercepting visitors before they arrived in the downtown area of the TOWN and prior to their arrival to ROMO. An ITS was again deployed in 2012 and 2013 with the same goal of reducing congestion. One important difference between the 2011, 2012, and 2013 deployments is that the latter two also focused on providing information about access limitations to the Bear Lake Road corridor as a result of construction. Rather than merely just suggesting that visitors should use the park and ride shuttle as an option as was done in 2011, in subsequent years, visitors were told that Bear Lake Road was “shuttle access only” or “no auto access.”

In September of 2013, the primary access roads to the park, US 36 and U 34, were heavily damaged by flooding. Therefore, the impact of this unusual weather event should be taken into account when considering the recommendations found within this paper.

This paper:
- begins with a discussion about ITS in national parks,
- describes the ITS deployed for ROMO/TOWN in 2011, 2012, and 2013,
- describes how the ITS was evaluated in 2011, 2012, and 2013,
- identifies the findings and lessons learned from 2011 through 2013 and how they impacted deployments in subsequent years, and
- documents the overall findings.

2. ITS IN NATIONAL PARKS

The National Park System (NPS) includes over 400 units that preserve and provide access to sites of historical and cultural significance, and majestic and rare wonders of nature. More than 280 million visitors from around the world are drawn to these sites annually. The popularity of these sites, coupled with an NPS mission to preserve them, result in a variety of complex transportation issues.

Over the last couple of decades NPS units have increasingly piloted and adopted ITS technologies to mitigate transportation problems. While only a small portion of NPS units are currently using ITS technologies on a regular basis, several dozen more have identified a need to study and incorporate these systems into their future visitor and
traffic management toolboxes. ITS is seen as an effective, flexible, and affordable mitigation to several common transportation issues NPS units face. Further ITS is less impactful to the fragile resources the NPS protects.

A 2011 ITS inventory of NPS sites, conducted by the John A. Volpe National Transportation Systems Center, identified the following categories or purposes for use of ITS by NPS units (2):

- Travel and traffic management,
- Public transportation management,
- Maintenance and construction management,
- Incident management,
- Entry management, and
- Other/general (further defined as coordination with State DOTs).

DMS and HAR were the most common ITS technologies deployed in NPS units. The most consistent purpose for the use of DMS and HAR was to support travel and traffic management. DMS and HAR were also mentioned as tools commonly used in support of maintenance and construction management. Units using DMS commonly identified the ability to quickly update or change messages as the biggest benefit of that technology.

3. ITS DEPLOYMENT

ITS Locations and Type

The first deployment of an ITS for ROMO and the TOWN was done in 2011. During this year, a regional approach was taken, as the devices were placed outside of the TOWN (see Location 2, FIGURE 2 and 3), and 20 miles away in Lyons, Colorado (see LOCATION 1, FIGURE 2). Location 1, 2 and 3 in FIGURE 2 and 3 indicate the approximate locations for the ITS devices.
FIGURE 2 Regional View of ITS Device Locations (3)
FIGURE 3 Estes Park Close-up of ITS Device Locations (3)
Location 1 had two dynamic message signs (DMS) (FIGURE 4), one on the SR 66 approach, and one on the US 36 approach. A highway advisory radio device (HAR) (FIGURE 5) was also utilized at Location 1. A DMS is used to provide short pieces of visual information. In contrast, a HAR is used to provide relatively longer pieces of information audibly, via a radio station. Location 2 had a DMS and HAR. Location 3 only had a DMS. US 36 was chosen, as compared with the other two roadways that serve as primary access to ROMO (US 34 and SR 7), because stakeholders indicated that findings from previous visitor surveys identified US 36 as the primary access roadway. The devices operated seven days a week from 9:45 AM to 6 PM, July 15, 2011 through September 5, 2011. On the weekends, during the peak periods from 11 AM to 2 PM, an alternative message was deployed on the HAR if afternoon thunderstorms were not expected. The message attempted to persuade listeners to consider visiting ROMO outside of the peak periods. (Note: Otherwise the message provided shuttle information.) The times during which the devices were operating were later because the peak visitation period is approximately 10 AM to 2 PM, since the intent was to address congestion during the peak periods.

In 2012, ITS devices were installed on US 34 and US 36, as the objective was to try to inform the greatest number of visitors about the restrictions in the Bear Lake Road corridor due to construction. Surveys conducted of the Fairgrounds PNR shuttle riders in 2011 showed the HAR was not very effective (TABLE 1), partially due to difficulties with topography intercepting the transmission and the solar panels not providing enough power to the HAR. As a result, only the DMS were utilized in 2012. As was done in 2011, a DMS was deployed at Locations 2 and 3, respectively. Devices were not installed at Location 1 because there was an interest in conveying the messages to those arriving on US 34. A DMS was added along US 34 at Location 4 and 5, respectively (FIGURE 2). Therefore, a total of four DMS were used. The devices were operable from May 29, 2012 through September 3, 2012, from 8 AM to 3:30 PM. The times during which the devices were operating were earlier than in 2011 because their primary use in 2012 was to notify visitors of the construction restrictions in the Bear Lake Road corridor, such as the shuttle-only access from 9 AM to 3 PM.

In 2013, again, only DMS devices were utilized. However, an additional DMS was added at Location 6, along SR 7. Therefore, a total of five DMS were used. This allowed researchers to gain an understanding of the impact of devices on all of the access roadways. The devices were operable from May 28, 2013 through July 19, 2013, 6 AM to 9 PM. The shuttle-only access was from 9 AM to 4 PM. The devices were operated for a longer period of time because the messages were more general as compared to the previous year.

<table>
<thead>
<tr>
<th>TABLE 1 2011 Fairgrounds PNR Shuttle Riders Response to Seeing and Using HAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairgrounds PNR Shuttle Riders</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Did at least one of the electronic message signs display a message prompting you to tune to the highway advisory radio, AM 1630?</td>
</tr>
<tr>
<td>Did you tune in to AM 1630 during this trip?</td>
</tr>
</tbody>
</table>
ITS Messages

Since the HAR devices were not utilized after 2011 as a result of findings from surveys during that year, the focus of this paper will be on the DMS messages, and how they changed over time. Development of the DMS message sets first considered Colorado Department of Transportation (CDOT), TOWN, and ROMO guidelines for variable messaging and/or visitor information dissemination. Then a review of effective messaging used in other NPS units and projects with similar objectives was conducted. Lessons learned from each previous year’s operation and feedback from ROMO and TOWN stakeholders were then incorporated to further refine the final message set. ROMO staff made the final selection of message sets each year, with review from CDOT staff to assure variable messaging guideline adherence. Detailed information about the messages in 2011 and 2012 can be found in the Rocky Mountain National Park Dynamic Message Sign/Highway Advisory Radio Operations Plan (4) and Rocky Mountain National Park Intelligent Transportation System, Static Signage, and Shuttle Recommendations for the 2012 Bear Lake Road Corridor Construction (5), respectively. No report documents all of the DMS messages used in 2013; however, the evaluation report (6) presents select messages displayed along US 36. Further, it should be noted surveys only evaluated if visitors saw the DMS and took action because of it. The surveys did not evaluate the effectiveness of individual words or messages from year to year. Changes to messaging from year to year were determined by anecdotal feedback from stakeholders and determination of the priority message ROMO wanted to convey each year.

In 2011, from July 15 through August 5, the message “PARK AND RIDE IN ESTES” was utilized. Note how concise the message is; this reflects the limited amount of information that can be provided on DMS. However, for the remaining period of operation (August 6 – September 5), this message was changed to “PARK AND RIDE AT FAIRGRDS.” The change was made because there was concern that if visitors were unaware of the Fairgrounds PNR, they would just assume that they should park anywhere in the TOWN. The other significant change from 2011 to 2013 was for Frame 2 of the DMS on US 36 near Pinyon. It changed from “FREE VISITORS SHUTTLE” to “SHUTTLE ACCESS ONLY” to “NO AUTO ACCESS 9AM – 4PM.” Notice the level of persuasion that is conveyed through the message when comparing the years. Additionally, it should be noted that there were many concerns expressed with the word “FREE” on the DMS because visitors using the shuttle were still required to pay the park entrance fee. One other important point to note regarding the messages is that as a result of the topography affecting required sight distance, the messages on US 34 could only utilize two frames of information. In contrast, the messages on US 36 and SR 7 could use three.

Static Signage

Access to the Fairgrounds PNR entrance required visitors to turn left from US 36 onto Community Drive, then right onto Manford Avenue, and then right into the entrance. In 2011, there were only two static signs (FIGURE 6) directing visitors from the DMS to the Fairgrounds PNR. Potential users were observed making the left turn from US 36, and subsequently making a U-turn back to US 36. Therefore, it was recommended to the TOWN to install additional static signage along this route to reassure potential users that they were headed in the correct direction. Unfortunately, in 2011, the additional signage could not be constructed and installed. Furthermore, in 2012, the signage was not installed until approximately mid-way through the ITS operating period. In 2013, the signage was installed for the duration of the ITS operation period. However, discussions with Fairgrounds PNR staff and comments on visitor surveys suggested that signage on the building where the shuttles pick up passengers was too small and not easily visible from the parking area.

Shuttle

The Hiker Shuttle is the primary shuttle connection between the TOWN and ROMO, going directly from the Estes Park Visitor Center (EPVC) to ROMO. The TOWN also operates a route that serves the ROMO Beaver Meadows Visitor Center, but it makes other stops between the EPVC and ROMO, and is less frequently used by park visitors. In 2011 and 2012, the Hiker Shuttle only ran to the EPVC. Therefore, a Fairgrounds PNR user had to first take the
Silver Route from the Fairgrounds PNR to the EPVC and then transfer to the Hiker Shuttle to access ROMO. One challenge of this was that the transfer times were not coordinated. In 2012 and 2013, however, the Hiker Shuttle added a stop at the Fairgrounds PNR.

TABLE 2 summarizes all of the aforementioned deployment characteristics.
TABLE 2 Deployment Summary

<table>
<thead>
<tr>
<th>Location of ITS</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of ITS</td>
<td>DMS & HAR</td>
<td>DMS</td>
<td>DMS</td>
</tr>
<tr>
<td>Area the ITS targeted</td>
<td>Regional</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Operation Hours of ITS Devices</td>
<td>9:45 AM to 6 PM</td>
<td>8 AM to 3:30 PM</td>
<td>6 AM to 9 PM</td>
</tr>
<tr>
<td>ITS Period of Operation</td>
<td>7/15/11 to 9/5/11</td>
<td>5/29/12 to 9/3/12</td>
<td>5/28/13 to 7/19/13</td>
</tr>
<tr>
<td>Presence of Static Signage at Fairgrounds PNR</td>
<td>Partial</td>
<td>Partial</td>
<td>Yes</td>
</tr>
<tr>
<td>Hiker Shuttle Connection between Fairgrounds PNR and ROMO</td>
<td>No; transfer at EPVC</td>
<td>Yes; direct connection to ROMO</td>
<td>Yes; direct connection to ROMO</td>
</tr>
</tbody>
</table>

4. ITS EVALUATION

The manner in which each ITS was evaluated varied over the years. As previously noted, objectives changed slightly each year, and evaluation was meant to inform practitioners. Limited time, funding, and a priority to meet the needs of ROMO, the TOWN and construction, precluded the ability to conduct research evaluation. In 2011, an evaluation plan was developed entitled, *Rocky Mountain National Park Intelligent Transportation System Evaluation Plan* (7). The plan made use of both observed data (i.e. traffic and ridership counts) and surveys to evaluate the system. The surveys were administered to selected individuals at three locations: Bond Park in the TOWN, the EPVC and on-board the Silver Route shuttle. In contrast, in 2012 and 2013, the surveys were made passively available at both the Fairgrounds PNR and the EPVC. Furthermore, while observed data was collected in 2012, the magnitude of collection was significantly less as compared with 2011. No observed data was collected in 2013; therefore it will not be discussed in this paper. The evaluation reports for 2011, 2012 and 2013, are called *Evaluation of an Intelligent Transportation System for Rocky Mountain National Park and Estes Park* (8), *Evaluation of Transportation Demand Management Strategies Used in Summer 2012* (9), and *Evaluation of 2013 ITS for the Town of Estes Park, Colorado* (6), respectively. More details regarding all of the evaluations performed in 2011, 2012 and 2013 can be found in the aforementioned reports. TABLE 3 summarizes the types of data available for evaluation, and the locations where the surveys were collected.
TABLE 3 Evaluation Summary

<table>
<thead>
<tr>
<th>Types of Data for Evaluation</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations of Surveying</td>
<td>Administered Surveys &</td>
<td>Passive Surveys &</td>
<td>Passive Surveys</td>
</tr>
<tr>
<td></td>
<td>Observed Data</td>
<td>Observed Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver Route, EPVC, Bond Park</td>
<td>Fairgrounds PNR, EPVC</td>
<td>Fairgrounds PNR, EPVC</td>
</tr>
<tr>
<td>Period of Survey Collection</td>
<td>July 27, 2011 to August 9,</td>
<td>July 21, 2012 to September</td>
<td>June 14, 2013 to July</td>
</tr>
<tr>
<td>(Fairgrounds PNR (Silver</td>
<td>2011 (14 days)</td>
<td>26, 2012 (68 days)</td>
<td>19, 2013 (36 days)*</td>
</tr>
<tr>
<td>Route)/EPVC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairgrounds PNR: Number of</td>
<td>68 (4.8)</td>
<td>71 (1.0)</td>
<td>49 (1.4)</td>
</tr>
<tr>
<td>Surveys Collected (Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of surveys collected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>per day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPVC: Number of Surveys</td>
<td>369 (26)</td>
<td>14 (0.21)</td>
<td>19 (0.30)</td>
</tr>
<tr>
<td>Collected (Average number of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surveys collected per day)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: In 2013, for the EPVC, the period was from late June through September 2, 2013.

5. DEPLOYMENT FINDINGS & LESSONS, 2011 - 2013

The following sections discuss some of the key findings as a result of surveys conducted in 2011, 2012 and 2013.

Overwhelmingly, considering all surveys and all years, the most commonly chosen access route was US 36. As a result, since the majority of respondents chose this as their access route, and considering that the greatest amount of information can be conveyed to users on DMS positioned on US 36 (3 frames versus 2 frames for DMS on US 34), the most significant impact from the DMS can be found by deploying them on US 36. Therefore, if ROMO/TOWN was only able to deploy two DMS in a given year, it is recommended that Location 2 and 3 be the preferred locations.

The 2011 surveys found that the DMS and HAR were the top two sources of information about the Silver Shuttle (i.e. the Fairgrounds PNR). In 2012 and 2013, the primary source for survey respondents to learn about the Fairgrounds PNR was the DMS (FIGURE 7), by a pretty significant margin as compared with other available responses. Therefore, one can conclude that the DMS does contribute to the use of the Fairgrounds PNR.
In addition to observing users turn from US 36 to Community Drive after the final DMS sign in 2011, only to then see them make a U-turn after driving without seeing the Fairgrounds PNR, survey evidence pointed to the need for improved wayfinding from US 36 to the entrance of the Fairgrounds PNR. Additionally, stakeholder surveys conducted in 2011 indicated a need for better static signage (3). A question was specifically created for the 2012 and 2013 Fairgrounds PNR surveys to evaluate if the static signage was successful. Seventy-five percent of respondents indicated that they had no problems in 2012 compared to eighty-four percent in 2013. Therefore, in addition to an increase that could be felt as a result of repeat Fairgrounds PNR users, it is also likely that the presence of better static signage for the entire ITS deployment period contributed to the increase. The remaining respondents who had problems could potentially reflect the need to better identify the shelter where the shuttle picks visitors up. Some open-ended comments indicated that this was still an issue.

With each year the shuttle service in the park has been offered, usage by visitors has increased. ROMO expected a similar phenomenon with regards to the Fairgrounds PNR. Shuttle service characteristics and collection of ridership data varied from year to year, making it difficult to track increases in ridership at the Fairgrounds PNR stop. Overall the Hiker and Silver Routes, which serviced the Fairgrounds PNR stop, saw increases in ridership in the 2012 and 2013. While none of the survey questions directly measure this increase either, the trend in the responses helps to support the expectation that visitors will learn about the Fairgrounds PNR and use it in subsequent years. The two questions from the 2012 and 2013 surveys that provided trends to support this conclusion are: 1) Have you used a shuttle to travel around TOWN/ROMO on a prior visit? and 2) How did you learn about the Fairgrounds PNR? Regarding the former question, the affirmative response rate (based on Fairgrounds PNR surveys) increased from 25% in 2012 to 43% in 2013. For the latter, the frequency of respondents choosing ‘Knowledge from previous visit.’ increased from 2012 to 2013. Therefore, considering these two pieces of information together, it seems reasonable to conclude that previous users of the Fairgrounds PNR are returning in subsequent years. Ideally, a direct question on this topic would be asked in future surveys.

Day visitors were categorized based on the answer to the question: How long do you plan to spend visiting TOWN/ROMO? Survey respondents were asked to provide the number of hours or the number of days, dependent
upon whether or not their visit was less than 24 hours or greater than or equal to 24 hours, respectively. The results from the passive surveys in 2012 and 2013 made it difficult to filter out local and employee respondents, as they could choose to indicate their visit to ROMO/TOWN was for the day, or if they were just staying for the summer season, sometimes they would provide the duration of that stay. However, when comparing the number of overnight visitors in 2012 and 2013 at the Fairgrounds PNR to the number of overnight visitors at the EPVC, there was a pretty significant difference of about fifty-three percent compared to sixteen percent. Therefore, it can be concluded that the majority of Fairgrounds PNR users are day users. This was the intention of the design of the Fairgrounds PNR; so it can be deduced that it is serving its function.

As shown in TABLE 3, the number of surveys collected, when using the passive approach, was significantly less at the EPVC as compared with the Fairgrounds PNR. The shuttle concessionaire stationed an employee, per ROMO’s request, at the Fairgrounds PNR to answer questions about the shuttles and construction. Therefore, it is likely that these employees assisted with making visitors aware of the survey. However, the EPVC staff members were also asked to make visitors aware of the survey, but it is likely that they were unable to promote it to a great extent due to their many responsibilities. TABLE 3 also shows that the number of surveys was significantly less for the Fairgrounds PNR from 2012 to 2013. While part of this may be the shorter time frame during which they were made available, the data also seems to imply that visitors who categorize themselves as locals or long-term visitors did not provide as many responses in 2013. It could be therefore hypothesized that the locals felt that they had provided enough input in 2012.

6. OVERALL FINDINGS

Considering the survey evaluation results from 2011, 2012 and 2013, the following are the key findings:

- Deployment of DMS on US 36 has the most impact,
- The DMS does contribute to the use of the Fairgrounds PNR,
- Static signage is an important system component,
- Fairground PNR users are repeat customers,
- The Fairground PNR primarily captures day visitors, and
- More surveys were acquired at the Fairgrounds PNR as compared with the EPVC.

The following sections discuss these findings in more detail.

Deployment of DMS on US 36 has the most impact. In 2011, the ITS was only deployed along US 36. In 2012, the ITS was deployed on both US 34 and US 36. In 2013, the ITS was deployed on all three access roadways to the east entrance to ROMO: US 36, US 34, and SR 7. Although there were various configurations over the years, the results of the surveys consistently placed US 36 as the primary access route for users of the Fairgrounds PNR. This route, from a topography perspective, lends well to providing the greatest amount of information to motorists via the DMS. Therefore, the most cost effective use of ITS would be providing DMS on US 36.

The DMS does contribute to the use of the Fairgrounds PNR. In 2012 and 2013, seventy-six percent and seventy-one percent of Fairgrounds PNR survey respondents, respectively, saw the DMS. While repeat visitors to ROMO and the TOWN are common, and the survey mechanism deployed did not allow repeat visitors to be filtered out, it is unlikely all respondents who reported seeing the DMS were also repeat visitors. Therefore, the presence of the DMS has a direct impact on the use of the Fairgrounds PNR. Future studies could be designed to filter out the number of repeat visitors to obtain a better understanding of the cost as compared with the impact of these devices.

Static signage is an important system component. From visual observations in 2011 of potential Fairgrounds PNR users making U-turns shortly after turning as directed from the DMS, and specific questions developed to determine if the enhanced static signage solved the issue in the 2012 and 2013 surveys, the value of providing signage from the last DMS (Location 2) to the entrance of the Fairgrounds PNR cannot be undervalued. It is clear from the surveys collected at the Fairgrounds PNR in 2012 and 2013, where the percentage of respondents indicating that they had difficulty finding the Fairgrounds PNR dropped, that installation for the entire period improved the situation. The remaining issue to address (identified through some of the open-ended questions) was to ensure that users knew exactly where to wait for the shuttle.
Fairgrounds PNR users are repeat customers. As mentioned previously, no specific question was asked regarding whether survey respondents were repeat visitors. However, there are indications through the responses to several questions that may support this conclusion. For example, more respondents in 2013 chose “knowledge from previous visit” as compared to prior years. Additionally, a larger proportion of Fairgrounds PNR survey respondents indicated that they had previously ridden shuttles within TOWN/ROMO when compared with EPVC survey respondents.

The Fairgrounds PNR primarily captures day visitors. The Fairgrounds PNR was designed with the intention of capturing day visitors. The surveys from 2012 and 2013 showed that those collected at the EPVC had responses only indicating that they were staying for a period measured in days. In contrast, the surveys collected at the Fairgrounds PNR had a slight bias towards those reporting their period of stay in hours. Those reporting their period of stay in hours were categorized as day visitors. However, some of the survey respondents who provided their stay in terms of days, also indicated that they were locals. Therefore, some survey respondents who are staying in the TOWN for the summer may be reporting the duration of their stay in terms of multiple days, even though they may be only visiting the park for one day. It would be useful in the future to filter out local respondents to gain a true understanding of how many day visitors and long-term visitors are using the Fairgrounds PNR. It is expected that this will further confirm that the majority of users are day visitors, thereby supporting the design intention of the Fairgrounds PNR.

More surveys were acquired at the Fairgrounds PNR as compared with the EPVC. Due to resource limitations, in 2012 and 2013, surveys were made available at the Fairgrounds PNR and the EPVC; however, they were not administered as they had been in 2011. However, they were promoted at the Fairgrounds PNR to some degree as a result of the presence of a representative from the shuttle company at this location, whose primary purpose was to answer questions from users. Therefore, it is not surprising that more surveys were collected from the Fairgrounds PNR. The number of surveys collected at the Fairground PNS compared to the EPVC in 2012 and 2013 was larger. Very few surveys were collected at the EPVC, which has made analysis difficult. Therefore, unless a different approach is adopted for distributing surveys, there is little value in making a survey available at the EPVC.

ACKNOWLEDGEMENTS

The authors would like to express their appreciation to Rocky Mountain National Park and the Town of Estes Park for their interest, support and dedication to this project. They would also like to acknowledge the equipment contribution and technical support of the Colorado Department of Transportation (CDOT). CDOT supported the ITS project all three years, loaning DMS signs to the effort and providing invaluable operational support. They would also like to recognize the technical editing provided by Carla Little of WTI.

BIBLIOGRAPHY
3. Central Federal Lands Highway Division. ArcMap