Transportation Engineering Instructional Practices:
An Analytic Review of the Literature

David S. Hurwitz, Ph.D.*1
Assistant Professor
School of Civil and Construction Engineering
Oregon State University
Kearney 101
Corvallis, OR 97331
Phone: 541-737-9242; Fax: 541-737-3052
E-mail: david.hurwitz@oregonstate.edu

Kristen L. Sanford Bernhardt, Ph.D., P.E.
Associate Professor, Chair of Engineering Studies
Department of Civil and Environmental Engineering
Lafayette College
Easton, PA 18042
E-mail: sanfordk@lafayette.edu

Rod E. Turochy, Ph.D., P.E.
Associate Professor
Department of Civil Engineering
Auburn University
Auburn, AL 36849
E-mail: rodturochy@auburn.edu

Rhonda K. Young, Ph.D., P.E.
Associate Professor
Department of Civil & Architectural Engineering
University of Wyoming
Laramie, WY 82071
E-mail: rkyoung@uwyo.edu

Prepared for ABG20 – The Transportation Education and Training Committee
Transportation Research Board, Washington, D.C.

Length of Paper:
Word Count (7,290): Abstract (214) + Text (6,326) + Tables and Figures (3)

*Corresponding Author
1After the first author, all authors are listed alphabetically to reflect the equal level of contribution.
ABSTRACT
Instructional practices in transportation engineering education are evolving, and only some of these changes have been documented in the literature. This paper provides a systematic review of journal articles and refereed conference papers addressing innovations in transportation engineering education, focusing on novel instructional practices and their influence on student learning. The literature review found 46 articles for analysis, with an increasing frequency of those publications over time. Instructional practices described in these papers include simulation, visualization, problem-based learning, and other active learning techniques. Most of these articles were written by individual researchers or a team of researchers at a single institution, and few of the articles cite one another, suggesting a need for more effective dissemination. Techniques for measuring student learning included in-person interviews, a variety of survey types (typically multiple choice or open-ended), concept maps, and direct assessment of student work. These were implemented mostly as post-assessments, but in some work a pre/post experimental design was employed. It is clear that more rigorous evaluation of student learning, resulting from changes in teaching practices, should be considered. The analytical review of the literature provides a resource for transportation engineering educators to identify pedagogical practices that are relevant to their courses and suggestions for how to measure the effect of these techniques on students learning.

INTRODUCTION
It can be argued that transportation engineering is a more challenging subject to teach than its other civil engineering counterparts for several reasons, including the lack of upstream courses found in other sub-disciplines (1). For example, within the structures area, students are shown simple structural systems and analysis techniques from their first year of college and then led through a series of classes with increasing complexity. In most programs, students do not encounter the transportation field until the junior year (2). In addition, unlike other civil engineering sub-disciplines, much of the transportation field outside of roadway design and pavements is not mechanics-based. While some areas of traffic engineering benefit from analogies to hydraulics, other areas lack significant connection with students’ previous course work. Further, a broad understanding of the transportation field requires knowledge in areas traditionally outside of engineering, such as public policy, economics, and human factors.

Transportation engineering education is similar to other civil engineering sub-disciplines in that faculty members responsible for instruction spend much of their available research time on their technical subject areas rather than on engineering education. With most educators working under dual objectives of teaching and conducting technical research, knowledge transfer of educational developments lags behind that of technical issues. A systematic review of the transportation engineering education research will benefit all transportation engineering educators and will increase the rate of knowledge transfer and of implementation.

There is a significant and growing need to foster rigorous analytic literature reviews in engineering education (3). A search for transportation engineering education literature showed that a systematic review of the literature, with a focus on instructional practices, or on any other pertinent topic, has yet to be documented. Examples of seminal analytic reviews from engineering education include Johnson et al., who reviewed active and collaborative learning, and Henderson et al., who reviewed the facilitation of change in undergraduate STEM instructional practices (4, 5). Such research efforts are critical in the documentation of previous research accomplishments and the identification of future research needs (3).
This work serves as a resource for 1) transportation engineering educators who will be able to better utilize the existing body of knowledge, leading to improved teaching and learning through more effective knowledge transfer about classroom practices and available tools; and 2) transportation engineering education researchers, who will have a better understanding of the gaps in the existing literature and can work to fill them. Both are important because pressures on transportation educators are only expected to increase as the profession continues to broaden, the tools become more complex, and the needs of the transportation profession continue to increase.

This paper begins with a description of the methodology for the review. Next, it discusses the results in terms of the selected articles, efforts related to innovative teaching practices, and studies that discuss efforts to measure the efficacy of these practices. Finally, it assesses the state of the field and suggests next steps for researchers and educators. It is not the intent of this systematic literature review to make recommendations on teaching practices beyond what is reported in the cited literature.

METHODOLOGY
A systematic literature review follows a specific sequence of steps to ensure that it captures the intended scope and addresses the research questions that are being asked. The approach here, based on that suggested by Borrego et al. (3), employs a four step process including I) defining research questions, II) defining a scope of inquiry, III) finding sources, and IV) applying exclusion criteria (Figure 1).

Research Questions
A clearly defined scope of inquiry and carefully articulated research questions are required to determine whether a particular study should be included for further analysis within the review. If the research questions are too broadly defined, it may be difficult to arrive at a concise final article database. The two primary research questions are:

1. What instructional practices have transportation engineering educators employed to improve student learning at the undergraduate and graduate levels?
2. What techniques have been used to measure student learning in transportation engineering education?

Finding and Cataloging Sources
The scope of the sources for this analytical review was limited to refereed journal articles and refereed conference proceedings, to increase the likelihood that the documents considered for inclusion would be 1) broadly accessible to the transportation education community, and 2) intellectually rigorous.

A variety of search engines (TRID, Google Scholar, etc.), digital archives, and article reference lists were examined for relevant articles. In each archive, numerous combinations of search terms were used (Table 1).
FIGURE 1: Flowchart of Systematic Literature Review Process

STEP I: DEFINE RESEARCH QUESTIONS
What instructional practices have transportation engineering educators employed to improve student learning at the undergraduate and graduate levels?
What techniques have been used to measure student learning in transportation engineering education?

STEP II: DEFINE SCOPE
Only consider refereed journal articles and conference papers
Establish exclusion criteria

STEP III: FIND SOURCES
Search engines used: TRID, Google Scholar, etc.
Archives used: TRR, ASCE JPI, ASEE Proc., etc.

STEP IV: APPLY EXCLUSION CRITERIA
Does the source:
A) involve professional development or continuing education;
B) K-12 education
C) disciplines not directly related to transportation engineering

INCLUSION CRITERIA MET
TEACHING PRACTICES:
- Simulation
- Visualization
- Active Learning
- EBL/PBL

EXCLUSION CRITERIA MET
REMOVE STUDY
TABLE 1: Archives and Search Terms Used

<table>
<thead>
<tr>
<th>Archives Searched (URL)</th>
<th>Search Terms Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ASCE Journal of Professional Issues in Engineering Education and Practice (http://ascelibrary.org/journal/jpepe3)</td>
<td>• Education</td>
</tr>
<tr>
<td>• ASEE Annual Conference Proceedings (http://www.asee.org/search/proceedings)</td>
<td>• Instruction</td>
</tr>
<tr>
<td>• European Journal of Engineering Education (http://www.tandfonline.com/oco-ceec20/current#.VBqT7fWlsO)</td>
<td>• Instructional Practices</td>
</tr>
<tr>
<td>• Google Scholar (http://scholar.google.com)</td>
<td>• Traffic</td>
</tr>
<tr>
<td>• Web of Science (Thomson Reuters) (http://wokinfo.com/)</td>
<td>• Transport</td>
</tr>
<tr>
<td>• International Journal of Engineering Education (http://www.ijeie.ie/)</td>
<td>• Transportation Curriculum</td>
</tr>
<tr>
<td>• ASEE Annual Conference Proceedings (http://www.asee.org/search/proceedings)</td>
<td>• Transportation Education</td>
</tr>
<tr>
<td>• European Journal of Engineering Education (http://www.tandfonline.com/oco-ceec20/current#.VBqT7fWlsO)</td>
<td>• Transportation Engineering Curriculum</td>
</tr>
<tr>
<td>• Google Scholar (http://scholar.google.com)</td>
<td>• Transportation Education</td>
</tr>
<tr>
<td>• International Journal of Engineering Education (http://www.ijeie.ie/)</td>
<td>• Transportation Engineering Education Curriculum</td>
</tr>
<tr>
<td>• Transportation Research Information Database (TRID) (http://trid.trb.org/)</td>
<td>• Transportation Engineering Curriculum</td>
</tr>
<tr>
<td>• Frontiers in Education Conference Proceedings (http://erm.asee.org/frontiers.html)</td>
<td></td>
</tr>
</tbody>
</table>

Criteria for Inclusion or Exclusion

Based on the research questions, criteria were developed for including relevant sources and excluding those outside of the scope.

Specifically, the focus is on collegiate undergraduate and graduate transportation education. Therefore, articles focused on preK-12 education, informal education, professional development, and continuing education were excluded. Articles focused on other sub-disciplines of civil engineering also were excluded.

Within this scope, articles focused on teaching and assessment of evidence-based instructional practices were included. Teaching practices include the use of active learning principles, simulation, visualization, other technologies and other types of innovations.

RESULTS

The results section is organized into three categories: a description of the final article database, an examination of papers focused on instructional practices, and an examination of how papers in the database measured the efficacy of novel instructional practices on the improvement of student learning. Manuscripts were first reviewed by each researcher independently and then discussed as a group, such that the interpretations of articles represent the collective interpretation of all four researchers.

Final Article Database

After exclusion criteria were applied, a total of 46 articles (20 refereed journal and 26 refereed conference) were included in the database for further analysis in this paper. Journal articles were sourced from: the Transportation Research Record: Journal of the Transportation Research Board (TRR), the ASCE Journal of Professional Issues in Engineering Education and Practice (ASCE JPI), and the European Journal of Engineering Education (EJEE). Conference proceedings were sourced from the ASEE Annual Conference Proceedings (ASEE Proc.). The 2014 Journal Citation Report lists the impact factor for TRR as 0.556 and for ASCE JPI as 0.716. No impact factors for the remaining journals and conference proceedings are available (6). The publication year for articles included in the database ranges from 1999 to 2014 (Figure 2).
FIGURE 2: Frequency of Refereed Journal and Conference Publications by Year

A visual inspection of the publication frequency over time indicates a generally positively increasing trend. This evidence suggests that scholarly work in transportation engineering education is increasing in importance as well as quantity. From the publications included for analysis, it was found that the average number of authors was 3.3 (median 3) with a minimum of 1 and a maximum of 9 authors (excluding committee written publications). The average number of citations in these publications was 18 (median 20) with a minimum of zero and a maximum of 36 citations.

Instructional Practices Developed
Transportation engineering educators have been publishing scholarly work describing creative instructional practices for use in transportation engineering education for at least the last 15 years. These include tools for simulation and visualization, problem-based learning, and other types of active learning.

Simulation
With increases in computing capabilities, simulation has become more common in transportation engineering practice. The benefits of simulation – the ability to explore “what-if” scenarios and system response to changing parameters – offer opportunities for conceptual learning at the student level. Chen and Levinson describe the benefits of incorporating simulation into an elective senior/graduate level course on transportation systems analysis as providing students with 1) “experiences” akin to real-world experiential learning, 2) opportunities to “learn by doing”, 3) an “interactive learning environment” with immediate feedback, 4) an opportunity to experience an
alternative teaching method that may better match a student’s learning style, 5) an opportunity to move toward higher levels of cognitive development, and 6) increased motivation (7).

Liao et al. reported on the development of an internet-based traffic simulator that was demonstrated in an undergraduate transportation engineering course (8). They implemented a laboratory module in which students were asked to use the simulator to develop signal timing plans and collected feedback from the students. They do not describe the expected or observed results.

Researchers have developed a suite of simulation tools for use in the typical undergraduate introduction to transportation engineering course (8-11). Their two primary hypotheses are that 1) “the simulation modules will improve student understanding of critical concepts in transportation engineering and lead to students learning better than they would in a course that does not use these simulation tools”, and 2) “the simulation modules will enhance student motivation toward the transportation engineering field and will improve student retention” (9). This group of tools is collectively named “STREET: Simulating Transportation for Realistic Engineering Education and Training;” the individual tools and their assessment results, as reported in the literature, are:

- **Agent-based Demand and Assignment Model (ADAM).** Zhu et al. describe ADAM as an agent-based travel demand model in which each traveler adjusts its destination and route choices until system equilibrium is reached (10). The authors concluded that students who used ADAM in a required undergraduate (junior year) introduction to transportation engineering class “improved their understanding of the transportation planning process and were more likely to use better judgment regarding analysis of transportation projects” (10).

- **Online Application of Signalized Intersection Simulation (OASIS).** OASIS allows a remote connection to a traffic signal controller, enabling students to implement and test their signal timing plans through computer animation (10). The authors do not report results of implementation.

- **Roadway Online Application for Design (ROAD).** Liao and Levinson explain that ROAD enables students to design a highway alignment digitally using a contour map as a base (11). A survey measuring a variety of items such as motivation, ease of use, and enjoyment of the learning experience, was administered after students completed a project using ROAD as a lab module in an undergraduate (junior year) introduction to transportation engineering class, with results ranging from 3.04 to 3.60 on a 1-5 scale, with 5 being the most positive.

- **Simulator of Network Growth (SONG).** According to Chen and Levinson, SONG is a bottom-up simulation of transportation network growth in which students can explore the relationships among link speed, land use, travel demand, and costs (7,10). An experimental evaluation of an elective senior/graduate level class in Transportation Systems Analysis revealed that use of the simulator improved student performance on some learning outcomes. However, issues with software and course design limited its effectiveness.

Luken et al. developed a simulation-based course module on airline operations for an elective undergraduate/graduate class on airports and freight (12). Students used the AIRLINE online simulation to understand business and operations decisions. Student survey results were positive and instructor evaluations of student work also reflected learning gains.

Fang and Pines describe a project in which students developed their own simulation tools as a service-based learning project in an elective senior/graduate level, transportation engineering course (13). Students began development of their simulation tools with simple spreadsheet-based
simulation models of stop-controlled intersections and then moved into the use of CORSIM and VISSIM models. Final solutions were presented to the agency staff involved with those projects and qualitative student feedback was generally positive.

Visualization

Although transportation engineering students have significant personal experience as transportation system users, they may lack a system-level perspective. This is particularly true in the areas of traffic signal timing and network topologies, and researchers have developed visualization tools to address this.

Brennan et al. describe a series of visualizations developed to help students understand the relationships among signal operation and vehicle progression for coordinated signal operation \(^{(14)}\); however, effectiveness was not discussed.

Brown et al. evaluated a set of traffic signal timing activities that involve animation in an elective senior undergraduate course on traffic systems design \(^{(15)}\). The evaluation used clinical interviews with students to understand impacts on “student understanding and reasoning” through the framework of conceptual change. The results show that students who used the animations had improved conceptual understanding of three out of five concepts, as compared to those who did not use the animations.

Sun et al. describe the use of a virtual city called ‘Sooner City’ to introduce engineering and design concepts across the curriculum; by the end of the four year program, each student has built his or her own city \(^{(16)}\). First year students in the required introduction to engineering course are asked to begin work on their roadway network for ‘Sooner City,’ with the dual purpose of visualizing the problem and learning traffic engineering concepts. Based on student perceptions of the experience, the use of the ‘Sooner City’ visualization tool was effective in improving learning. The student responses showed the greatest improvement in being able to visualize the problem they were asked to solve.

Bertini et al. developed a handheld device to collect transportation data such as position over time, feature location, and vehicle/pedestrian counts that could be incorporated into classroom and lab activities \(^{(17)}\). Collected data was then imported into spreadsheets and geographic information systems for visualization. System effectiveness was not discussed.

Experience-Based Learning / Problem-Based Learning

A number of problem-based learning (PBL) transportation activities have been described in the literature. Ahern discusses the integration of PBL exercises into junior and senior level undergraduate transportation electives \(^{(18)}\). One activity was incorporated in a transportation policy class, and two were included in a transportation modeling/traffic engineering class, both with positive feedback from faculty. Fini and Mellat-Parast describe a semester-long project that they developed and implemented in a required undergraduate transportation engineering course \(^{(19)}\). The project focused on pavement design. Before and after questionnaires showed student responses to the approach were positive and that grades were higher than in a semester where the PBL approach was not used. López-Querol et al. present a PBL approach to a required undergraduate transportation geotechnics and pavement engineering class, and conclude that, based on grades and pre-/post- surveys, students are more satisfied and perform better with the PBL approach \(^{(20)}\).

The earliest paper found describes a transportation capstone experience during the senior year that was developed in response to changes in accreditation requirements in the early 1990s.
Schoon explains that the course utilized a large scale, open ended design problem. End of course evaluations indicated a need for more organization in the course but overall the students found the experience acceptable.

Melin et al. redesigned an elective undergraduate introduction to transportation engineering course anchored by an experience-based learning exercise, representing approximately 60% of the course. Specifically, the experience-based portion of the course included two-lane roads design/construction, pavement design/maintenance/repair, and earthwork operations. The authors report the need for evaluation of outcomes in the future.

A study by Nicholas et al. also sought to use real-world problems to supplement content in transportation and transportation structure design projects. The authors developed a course manual that included sections on MicroStation basics and the application of MicroStation in highway and bridge design. The course concludes with a final project that uses all of the skills learned within the three modules. Student feedback was positive.

Bandyopadhyay et al. describe community-based projects in which students conducted a case study of Route 101 traffic issues in New York, using real-world data to provide analysis and recommendations to a community planning board. These projects were conducted outside of a formal class. Evaluation results were not reported.

The impacts of a change from traditional lecture to project-based learning in a required junior level introductory transportation engineering course were assessed by Hamoush et al., using student questionnaires to capture changes along five learning dimensions from one term to the next. A highway and pavement design project was used throughout the term (in the project-based approach) to teach the related concepts. Increases were reported in four of five surveyed areas (higher-order cognitive domain of learning, self-efficacy, ease of learning, and impact on teamwork); the increase on ease of learning was statistically significant. The average grade increased, but the increase was not statistically significant. The researchers concluded that the project-based approach improved student learning.

Sun and Ritchie implemented PBL resulting from a partnership between the university and public agencies where state-of-the-practice methods and tools were introduced in an undergraduate traffic control course/laboratory experiences based on real-world transportation networks. Practitioners also provided input into the course curriculum. Student feedback on the two-year experiment was positive. Similarly, Murad added team-oriented projects to a required junior level transportation lab attached to a general transportation course that introduced open-ended problems. The introduction of the design problem required expanded course content to accommodate the scope of the project. Student surveys indicated that the lab experience was valuable.

Rose describes the introduction of a “simulated consulting” project as an element of an undergraduate senior level elective in transportation planning. The four phase project included preliminary planning, data collection, coding and sharing the data, and analysis and reporting. Students worked in teams of two or three to design travel surveys for bicyclists including demographic data, origin-destination data, trip purpose, etc. The influence of the project on student learning was not discussed.

Student perceptions of a case-based team learning approach employed in an introductory transportation engineering course were examined by Nambisan. The class was divided into teams of two or three students; each team was assigned a transportation improvement project to develop during the semester. Additionally, in each class period, a new set of groups was created to execute active learning tasks during class. For the term-length project teams, students completed a survey of their perceptions on ten team dynamics metrics and four dimensions of team
performance. Key findings were that the combination of team learning strategies and the case-based approach achieve higher levels of learning and that students generally favored this approach over more traditional methods.

Other Active Learning

Active learning engages students in ways beyond listening and can range from answering instructor questions to group problem-solving (30). In addition to the examples of problem-based learning described in the previous section, a number of other examples of transportation-related active learning modules and activities are available in the literature.

Kyte et al. describe some of the benefits of student-centered learning and examine curriculum development under such a model (31). Specifically, they describe and evaluate the Highway Capacity Manual Applications Guide (HCMAG), Mobile Signal Timing Training (MOST), and the Transportation Education Development Pilot Project (TEDPP) on the basis of learning-centered curriculum development approaches. All three curricula were found to have clear learning outcomes and support student assessment and critical thinking, but specific details about implementation were not included in this article. In this same vein, Bill et al. 2011 present a set of learning outcomes and knowledge tables to support development of active learning activities (32). Learning outcomes and knowledge tables were then used to restructure content of the required junior level introductory transportation course at three universities and students’ changed perception regarding the transportation profession were tracked over the semester (33).

Bham et al. developed and evaluated a GIS laboratory module for transportation safety in a required undergraduate introductory transportation engineering class (34-37). The laboratory included three tasks: a self-paced ArcGIS tutorial using a simplified crash database, a transfer task using a field-based data set, and a synthesis task to document findings. Their goals were “to evaluate, from students’ perspective, to what degree the GIS laboratory was a useful learning tool for a civil engineer undergraduate in a transportation engineering course.” Based on qualitative and quantitative evaluation, the authors concluded that the GIS laboratory facilitated student learning about traffic safety and helped students connect the concepts to engineering practice. Another related article noted that the GIS laboratory experience scored slightly lower than the lecture component of the course, with respect to where students learned information; this was likely due to early versions needing adjustments with pace (36). The self-learned, GIS laboratory used progressive scaffolding where instructions are provided, with the option for students to move forward with the lab or watch more in-depth video instructions. Student feedback on this feature was positive. Further, it was determined that student performance was improved by anchoring the lab in a 20-minute transportation safety lecture (35). It was determined that 16 of 27 students found the laboratory interesting, useful, realistic, or well supported by the online tutorial; of these 16 students, 10 participated in the treatment group that included the anchoring safety lecture (35).

Another aspect of this study focused on changes in self-efficacy and perceived difficulty of material when shifting the GIS lab component of the course from a separate stand-alone module to an integrated design project (37). On a 9-point scale, the average score on self-efficacy increased from 3.4 (stand-alone model) to 3.9 (integrated with design project), while perceived difficulty decreased from 5.8 to 4.3. However, an explanatory model was only able to account for 24% of the performance differences.

The use of “threshold concepts”, which involve the development of concept maps to allow for integrative and transformative shifts in student understanding, was applied to strengthen student understanding of the sequence of steps, and the interactions among them, in the
development of a highway horizontal alignment in an introductory transportation engineering class composed of junior and seniors (38). The integrativity (realization of connections among steps not previously known) and transformativity (conceptual and ontological shifts in understanding) were demonstrated in reflective assessments made by many of the students in the class.

An interrupted case method, in which increasing details and context of a particular scenario are provided to students over time, was implemented as a means of teaching ethics in an undergraduate transportation engineering and systems management course and in a graduate transportation engineering course (39-41). Brooks et al. distributed the problem details in four increments each separated by three weeks for active reflection. A 19% improvement in overall undergraduate student transportation engineering grades occurred between the treatment and control cases, and a 15.3% improvement in overall graduate student ITS grades occurred between the treatment and control cases.

Mehta developed a variety of in-class activities for a required and an elective introductory transportation class (42-44). In the former (42), he incorporated active problem-solving into every class period; in the latter (43), he relied on the Highway Capacity Manual as a primary course text. In both cases, student surveys showed satisfaction. His subsequent paper (44) describes faculty assessment of student skills according to a rubric developed for ABET; again, the methods were considered useful.

Smadi and Akili describe briefly homework and project activities developed for an asset management course; the authors do not provide an assessment of the activities (45). The authors do argue that active learning and engagement-based teaching practices are critical in coursework focused on asset management.

Silva et al. tested a progressive process of moving from course learning outcomes, to specification of teaching-learning methods, to development of active learning exercises, to the evaluation of course learning outcomes in a regularly offered undergraduate planning and analysis of transport systems class (46). Techniques used in this progressive process include a computer-based concept mapping tool, Index of Learning Styles, and the Keirsey Temperment Sorter for forming student teams. Minute papers, constant questioning, and teamwork exercises were used to stimulate the participation of the students. One of the most positive outcomes from the effort was the use of concept maps, created by the students three times during the course to assess the progression of student learning. Half of the students showed strong improvement in their conceptual mapping and another 31% had moderate improvement (46). Student evaluations of the overall course were high.

Measurement of student learning

In the analytic literature review of 46 papers focused on instructional practices in transportation engineering education, student learning is addressed to widely varying degrees; in some cases, it is not addressed at all. Measurement techniques, listed in descending order of prevalence in the literature, have included surveys, in-person interviews, direct assessment of student work, and concept maps. Ideally, the selection of a technique to measure student learning is guided by the particular learning objectives of concern, but the mapping of measurement technique to learning objectives was rare in the articles examined.

Surveys – were used as a means of measuring student learning in 15 of the studies considered in this review. The most common approach included a pre-/post-survey (7-9, 34, 35). In this design, the pre-course survey was typically used to collect demographic or confounding information on the students and baseline knowledge of the topic area of concern. The post-survey
often collected self-reported performance data. Particularly useful pre-survey designs included additional information on student learning styles (7). These pre-/post-surveys were commonly applied to both control and treatment groups either randomly selected from the same class or from two separate classes in different semesters (7, 10). Alternatively, Hurwitz et al. used a longitudinal survey design that included pre-, post- and 6-month surveys (47, 48), while Liao and Levinson, and Bham et al. used pre-/post-surveys for several years with subsequent cohorts of students and a particular intervention (11, 34). The inclusion of additional data points can significantly increase confidence in the results of such surveys. Several studies used a single post-survey for data acquisition (e.g. 12, 13, 16, 19, 36). López-Querol et al. also used post-surveys but compared the results of a control group and an experimental group (20). The lack of pre-survey or baseline data poses a challenge when trying to assess the impact of a particular intervention. Alternatively, Mehta used a survey rubric for faculty members to evaluate student progress (44). Open-ended survey questions were implemented by Bham et al. to better assess student perceptions of a GIS laboratory (35).

In-Person Interviews – have been used as a means of determining differences in the conceptual understanding and ways-of-thinking in control and treatment groups before and after particular instructional practices, as a way to compare two different groups, (as Davis et al. did with instructors and engineers), or by randomly selecting representative students from a population as demonstrated by Andrews et al. (15, 49, 50). Interviews also were used to analyze traffic signal misconceptions across novice students, expert students, and practicing engineers to determine conceptual differences among those groups (51, 52).

Direct Assessment of Student Work – has been used as a means of determining the impact of student performance in particular content areas. Quizzes were used as a standalone activity by Zhu et al. to measure student performance on travel demand modeling and as an element of a follow up survey by Bham et al. to assess retention of basic traffic safety issues examined in GIS software (10, 34, 35). Chen and Levinson used questions from a final exam dealing with the four-step traffic demand modeling as a measure of student performance (7).

Concept Maps – were uniquely applied by Silva Junior et al. longitudinally at the very beginning of class, immediately before the intervention, and after completing a project associated with the intervention (46). The concept maps were analyzed to assess the conceptual knowledge, and quality of the conceptual relationships, developed by the students over time.

DISCUSSION
From the analytic review of literature, it is apparent that interest in transportation engineering education is increasing, as indicated by the strong upward trend in the number of articles published by year (Figure 2). This trend also coincides with direct efforts to build and strengthen transportation engineering educators’ community of practice (1, 47, 53). Presumably, the authors of these articles want not only to document their efforts but also to inspire others to adopt and adapt the effective teaching practices they describe.

A considerable number of innovative methods and tools that would be of interest to transportation educators were found in the instructional methods literature. These methods include simulation and visualization, problem-based learning, and other types of active learning approaches. Of these, the focus most often was on active learning approaches. The articles describing these efforts can provide a starting point for educators looking to implement new techniques in the classroom and also can stimulate ideas for new tools or approaches.
The tools and methods discussed in these articles were usually the result of individual institutions utilizing research funding to try new techniques. Many of these articles referenced educational literature and occasionally referenced engineering education literature, but only in rare situations did they reference other transportation engineering educational efforts, beyond the work done at that institution. Greater dissemination of ideas, and ultimately adoption of best practices, across institutional boundaries will be necessary to create a stronger community of transportation engineering education practice. Efforts by the authors to strengthen this community have been documented, but more is needed (47, 54). The literature summarized in this article indicates that appropriate innovative classroom practices are well-received by students and the impact on student learning is generally positive. It was also found that most of the reported assessments relied heavily on indirect measurement, such as the use of student opinion surveys; however, a few efforts performed direct assessment through the use of control groups, exam and quiz questions, and concept mapping. The student surveys measure engagement and students’ perception of their learning, while the direct assessment measures actual student learning. To stimulate wider adoption of innovative teaching practices in transportation engineering, more direct assessment of student learning will be necessary.

Based on the literature reviewed in this paper, barriers to more widespread adoption of innovative teaching practices include lack of best practices, lessons learned, and advice for those wishing to adopt the practices described; as well as limited data on the efficacy of these practices in terms of student learning.

The development and documentation of novel instructional practices is both resource and time intensive. The impact of this investment is significantly increased if those practices can be widely adopted by other faculty teaching similar content. This is more likely to happen if the efficacy of the instructional practices in question has been rigorously established. In this context, one of the most meaningful measures of teaching efficacy is the potential to improve student learning. The literature reviewed describes the teaching practices adopted, and in many cases it describes challenges the authors faced in development and implementation. However, few of the articles explicitly address the needs of someone wishing to adopt the innovation described in the work. While the documented spread of these practices is low, it is likely that some of these innovations have been adopted by other faculty members but not reported.

A number of opportunities and resources exist that could promote the dissemination and adoption of evidence based instructional practices in transportation engineering education. For example, communities of practice can informally share best practices. Such interactions can be facilitated by organizations such as the American Society of Civil Engineers, the American Society for Engineering Education, the Institute of Transportation Engineers, and the Transportation Research Board. These same organizations publish journals and conference proceedings that enable transportation engineering educators to share more formally work on innovative teaching practices. Increased understanding of the value of such work and commensurate recognition in faculty reward structures also has the potential to stimulate the development of such a community. For work that is intended to demonstrate improved student learning, peer reviewers should require that authors demonstrate the application of best practices in its measurement.

A number of excellent examples of best practices for measuring student learning are available in the literature (55-58). For example, Novak, considered the founder of concept/knowledge maps, documents their appropriate use as instructional and assessment techniques (55). Think-aloud interviews have been used in a wide variety of applications, but Leighton focuses on the application of think-aloud interviews for education measurement (56).
Hestenes et al. documented the development and implementation of the Force Concept Inventory (FCI), the first concept inventory, which consists of a collection of multiple choice questions. Each question is concerned with only one concept and each wrong answer is based upon commonly held student misconceptions. Dozens of concept inventories in other disciplines have been developed based on the FCI. Angelo and Cross documented over one hundred additional assessment techniques including the minute paper, approximate analogy, and muddiest point paper.

Another example of relevant work from the broader engineering education field is a recent article by Ambrose for the National Academy of Engineering that highlighted the following six findings from previous engineering education research that should be integrated into curricula:

- Context and integration across courses promotes transfer of knowledge and skills to new contexts;
- Early exposure to engineering and engineers lays foundation for future learning;
- Timely, meaningful engagement promotes deep learning;
- Opportunities for reflection connects thinking and doing;
- Development of metacognitive abilities fosters lifelong learning skills; and
- Authentic experiential learning opportunities put theory into practice.

A particularly compelling point made by Ambrose is that a lot is known from previous research about what works in engineering education and it is time to begin more meaningful implementation.

A useful resource, although not specific to engineering, is the What Works Clearinghouse website managed by the Institute of Education Science. This clearinghouse provides well-reviewed research results on educational practices and would be useful to transportation engineering educators for providing both research results to justify proposed classroom practices and planning methods for assessing student learning. A second broader resource is the ciHUB, which is supported by the National Science Foundation and operated by Purdue University. Among its many functions, ciHUB provides a platform for archiving and disseminating concept inventories, including several in engineering.

Lastly, the 2009 article by Chi is a good resource for active learning both for its framework for classifying learning activities into passive, active, constructive, and interactive and for its extensive list of active learning references.

CONCLUSIONS

Transportation engineering education is an emerging field of scholarly inquiry that is, by its very nature, inherently complex and interdisciplinary. As with all such fields, periodic analytic literature reviews are critically important for collecting, synthesizing, and interpreting the existing body of knowledge, as well as identifying gaps and opportunities. This analytical literature review focuses on innovative teaching practices and techniques for measuring student learning in transportation engineering education.

The review of innovative instructional practices includes the following findings:

- A wide variety of simulation, visualization, concept mapping, and other active learning techniques have been applied to a myriad of topics in transportation engineering.
- The vast majority of this work has been developed and implemented by a researcher or a team of researchers at a single institution with little evidence that dissemination efforts have resulted in wider adoption of these practices.
There is a need for work that promotes the adoption of those innovative practices that have been shown to be effective.

The review of techniques for measuring student learning includes the following findings:

- The measurement of student learning has been assessed through the use of surveys, including open-ended survey questions; in-person interviews; the direct assessment of student work; and concept maps.
- The most compelling evaluations of student learning include both qualitative and quantitative elements and triangulate student performance across multiple measurement techniques.
- There is a clear need to consider and more rigorously evaluate the student learning resulting from novel instructional practices in transportation engineering education.

The transportation engineering education literature at present is not well-developed enough to support recommendations of best practices from within this literature. However, the transportation engineering education literature, when combined with the broader engineering education research literature, some of which is summarized above, suggests that active learning activities can be effective in improving student learning. Further, an opportunity exists to map the state-of-the-practice in transportation engineering education instructional practices in ways that go beyond a literature review.

An additional contribution of this paper is the documentation of the process that was used to compile all of the literature on this topic into a single source. A review of this type should be done periodically to facilitate access to the body of literature and the drawing of broader meta-level conclusions from the research, as is more common practice in disciplines with well-established educational research communities, such as physiology or medicine.

This analytical literature review serves as a resource for transportation engineering educators to quickly identify a variety of resources, detailing techniques that can be implemented in the classroom to improve the quality of student learning. This should be of interest to all transportation engineering educators, both those who plan to document related work publicly and those who simply wish to apply the work of others. Hopefully, it will also inspire further development of new and innovative techniques in the field of transportation engineering education.

ACKNOWLEDGEMENTS
The authors recognize the invaluable contributions of Katie Mannion, an undergraduate research assistant working under the supervision of Dr. Hurwitz who helped gather and format references and develop figures. We also appreciate the suggestions of the anonymous reviewers, which led to a stronger paper.

REFERENCES

27. Murad, M. M. Redesigning the Transportation Course to Incorporate Team-Oriented, Project-Based Field Assignments. Proceedings, ASEE 112th Annual Conference, 2005.

