Market Penetration Model for Autonomous Vehicles Based on Previous Technology Adoption Experiences

Mohammad Lavasani
Department of Civil and Environmental Engineering
Florida International University
10555 W. Flagler Street, EC3725, Miami, Florida 33174
Tel: (786) 709-2789
Fax: (305) 348-2802
Email: ssada006@fiu.edu

Xia Jin, Ph.D., AICP *
Department of Civil and Environmental Engineering
Florida International University
10555 W. Flagler Street, EC 3603, Miami, Florida 33174
Tel: (305) 348-2825
Fax: (305) 348-2802
Email: xjin1@fiu.edu

Yiman Du
Department of Civil Engineering
Tsinghua University, Beijing 100084, China
Email: ymducp@gmail.com

* Corresponding author

TRB 16-2284

Word Count: 5500+2000 (4 tables and 4 figures) = 7500
ABSTRACT

This paper presents the effort in developing a market penetration model for autonomous vehicle technology adoption, based on similar technologies and previous trends in the United States. Generalized Bass diffusion models are developed, based on data from previous technologies, including sales and price data on conventional automobiles and hybrid electric vehicles, and the usage of internet and cellphones. Based on the adoption patterns of previous technologies, two values representing the innovation factor (risk taking capacity) and the imitation factor (culture and lifestyle preferences) are selected for AV market penetration. In addition, external variables such as the price of the AVs relative to conventional vehicles, and economic wealth are incorporated into the model. The market size for AV adoption is determined based on the usage of internet, and household is considered as the unit. Given the uncertainties in market size and price of AVs, sensitivity analysis are also conducted to understand the possible impacts of these factors on user adoption. In general larger market size leads to higher adoption rate, while the initial cost of AVs relative to conventional vehicles does not seem to influence the diffusion process much. This paper contributes to the literature by adding a quantitative analysis of AV market penetration based on past technology adoption experiences. The study results provide valuable insights in terms of the possible market diffusion patterns and the impacts of different factors on user adoption.
Lavasani, Jin and Du

1 INTRODUCTION

Autonomous vehicle (AV) development is a considerable accomplishment of the 21st century. AVs, also known as self-driving vehicles, robotic cars, or driverless cars, are defined as computer equipped vehicles which can be driven and operated without human driver’s active control (1, 2). AVs are capable of fulfilling the main transportation capabilities using information provided by their sensors about the surrounding environment, and do not need connection with infrastructures and other vehicles (3). Automated vehicles may be autonomous (with only vehicle sensors) or may be connected (cars and roadside infrastructure communicate wirelessly). The National Highway Traffic Safety Administration (NHTSA) defined five levels of automation, starting from level 0 which is the basic traditional vehicles with no automation up to level four with full self-driving automation (4). This study considers Level four AVs, when vehicles can perform all driving functions and monitor roadway conditions for an entire trip, and so may operate with occupants who cannot drive and without human occupants (4).

Self-driving vehicles may have seemed to be a distant dream several years ago, but manufacturers’ prototypes including Google self-driving cars, Mercedes-Benz S 500 Intelligent Drive and Audi A7 Piloted Driving showed that AVs are becoming real now. Google self-driving vehicles have traveled more than 1 million miles from 2009 to May 2015 without human intervention (5) and several other companies plan to release the AVs in the next decade (6–9). On the other hand, legislators are considering bills regarding AV tests and utilizations. Until July 2015, five states of California, Florida, Michigan, Nevada, Tennessee and also District of Columbia have passed laws on testing autonomous vehicles and sixteen other states are considering bills related to autonomous driving in 2015 (10).

In light of the fast developing technologies, several studies have been conducted to predict AV adoption rate. Litman (2014) predicted the implementation of AVs based on previous vehicle related technologies (automatic transmission, air bags, hybrid vehicles, subscription vehicle services and vehicle navigation systems) and also fleet turnover rates (11). The study predicted that AVs would be on streets with high cost in 2020s, and it would take up to 2050s to reach 80-100% market share. Fagnant and Kockelman (2015) predicted a sooner mass-market presentation start for autonomous vehicles, considering that Nissan and Volvo announced their commercially viable autonomous vehicles in 2020 and five years for price drop down (2). Wallace and Silberg (2012) proposed three possible adoption scenarios, including aggressive adoption, base case adoption and conservative adoption. The adoption scenarios were composed of various elements including cost, technology, and consumer acceptance, etc. (12).

Although the above studies all provide valuable perspectives in estimating AV adoption rate, most of them are based on qualitative estimates or focused on the technology aspects only. This paper intends to use a mathematical modeling approach that considers the market size, user adoption behavior, and historical data on the penetration patterns of previous technologies. In this regard, market diffusion models have been proven a powerful tool in predicting the market for new products. Diffusion models can estimate how the new product will penetrate the market and also estimate the market potential for that product. It provides important information for manufacturers
Lavasani, Jin and Du
to control their products based on the market behavior, also it is very critical for policy makers to prepare all the required infrastructures to manage the adoption process. The results of this study can contribute to the literature by providing a mathematical approach to market penetration prediction of AVs, for which the assumptions and inputs of the model can be easily modified and updated based on the latest knowledge of the market and technology progress.

The next section summarizes the literature review on the use of diffusion models to predict market penetration for new automobile related technologies, followed by the methodology section that introduces the modeling framework. Model results and sensitivity analysis are presented next, and the last section concludes this study.

LITERATURE REVIEW

Bass Diffusion Models

Generally, diffusion models assume the cumulative sales of a new product over time will be an S-shaped curve (Figure 1, up). The curve slope at each time point represents the adoption rate. Adoption rate starts low at the beginning periods of product launch, which reflects consumers’ conservativeness regarding the new product especially if they are not familiar with the product. Gradually, the rate may increase (if the product is successful), as personal recommendations, social and media commercials may persuade followers to use the product. Depending on the product, market saturation will occur in a few months or years when the adoption rate starts to decrease to almost zero. The most popular first-purchase diffusion models in marketing are Bass, Fourt and Woodlock, and Mansfield (13). Among these, the Bass model have been used widely in market penetration forecasting of new products.

Bass diffusion models assume adopters of a new innovation are influenced either by mass media, or by word of mouth (13). In other words these two means of communication are the two most important factors on consumers’ acceptance (i.e. purchase the new product or subscribe to the new system). The people who are influenced by mass media are called innovators and the second group are known as imitators in market diffusion model literature. Based on Bass assumption, innovators...
Lavasani, Jin and Du

exist in the whole diffusion process while imitators join the market after several sale periods. Figure 1 shows the trend of a nominal product sale during sale periods. Non-cumulative adopters will reach to a maximum point which corresponds to inflection point of cumulative S-shaped curve.

The basic Bass model equation, which is derived from a hazard function (the probability that an adoption will occur at time \(t \), given it has not yet occurred), is shown in Eq. 1 (13):

\[n(t) = \frac{dN(t)}{d(t)} = p[m - N(t)] + \frac{q}{m} N(t)[m - N(t)] \] (1)

where \(N(t) \) is the cumulative number of adopters at time \(t \), \(m \) is the potential market size, \(p \) and \(q \) are coefficients of innovation and imitation, respectively. Eq. 1 is a first-order differential equation, which can be solve to Eq. 2 using an integration:

\[N(t) = m \left(\frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p} e^{-(p+q)t}} \right) \] (2)

However as mentioned before, the Bass diffusion model is not able to consider external influencer variables, such as cost reduction effects. For this reason a generalized Bass diffusion model is developed to overcome basic model limitations. Generalized Bass model includes a mapping function of \(x(t) \):

\[n(t) = \frac{dN(t)}{d(t)} \cdot x(t) \] (3)

Which \(x(t) = x(t; \theta) \), \(\theta \in \mathbb{R}^k \) is assumed to be nonnegative and integrate-able (15):

\[N(t) = m \left(\frac{1 - e^{-(p+q)\int_0^t x(t) \, dt}}{1 + \frac{q}{p} e^{-(p+q)\int_0^t x(t) \, dt}} \right), \quad t, p, q > 0 \] (4)

When there is not any external variables, \(x(t) = 1 \) and generalized model will shrink to the base model. To estimate a generalized Bass model, basic Bass model coefficients (\(p, q \) and \(m \)) should be estimated with external variables coefficients. The mapping function is normally shown as Eq. 5:

\[x(T) = 1 + \beta_1 X_1 + \beta_2 X_2 \] (5)

In which \(X_i \) represent the external variables, i.e. price and advertisement rate and \(\beta_i \) are the corresponding coefficients.

Applications of Diffusion Model in Automobile Technologies

Diffusion models have been used in several automobile related technology studies, which generally can be categorized into two groups based on the modeling framework; a group which
used conventional diffusion models (i.e. Bass) (16-18), and other group which have used Stated Preference (SP) surveys and developed discrete choice models (19-21).

Massiani and Gohs (2015) developed a Bass model based on Germany data for new automotive technologies (16). New registrations for Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG) vehicles, Elective Vehicles (EV) and Hybrid Electric Vehicles (HEV) were used in this study as sales data for new automotive technologies. The study estimated the parameters with varying levels of market size, and found that the innovation coefficient (p) was highly affected by changes in market size while the imitation coefficient (q) was not influenced by market size. The authors found an inverse relationship between assumed market size (M) and innovation coefficient in this study. This will make it very difficult to draw conclusions for the value of (p) when M is fixed, but not precise. This study also provided a fair guidance on using endogenous or exogenous market potential value when applying a Bass model in automotive industry.

Cordill (2012) proposed a diffusion model to study the future of HEV market (17). Innovation (p) and imitation coefficient (q) were estimated for three EV technologies of Prius, Hybrid Civic and Ford Escape using 2000-2010 sales data, followed by a survey to develop a model defining important factors affecting consumer’s preference. Respondents who liked to purchase an EV in the near future were classified as innovation group and other participants were classified as imitation group. It was concluded that selected vehicle price, gas saving and price of gas are the three most important factors for both groups, while emission and operation reliability were two other factors affecting the innovators preference and the availability of future tax benefits and vehicle crash report were found to affect the imitators choice.

Park et al. (2011) developed a market penetration forecasting model for Hydrogen Fuel Cell Vehicles (HFCV) considering infrastructure and cost reduction effects for Korea (18). Based on their results, HFCV market would be saturated in 2038 in Korea and in 2050 in the US. The parameters of generalized Bass model was estimated based on the historical sales of Prius HEV and its prices in comparison with Toyota Corolla as the representation of conventional vehicles.

Another group of market penetration studies used SP surveys and choice modeling approach to estimate diffusion models for new automobile related technologies. Jensen et al. (2014) proposed a forecasting method for EV demand in Denmark using regression method and also diffusion model parameters. The study indicated that alternative specific constant (ASC) of logit models can overshadow the market penetration, hence the authors used adjusted model with diffusion parameters (19). McCoy and Lyons (2014) conducted an agent-based model to simulate market diffusion of EVs in Ireland (20). Analysis of four neighborhoods with different socioeconomic and demographic properties was conducted, and as expected it was found that the wealthier neighborhoods with more homeowners would have much higher adoption level than less wealthy neighborhoods. Brown (2013) simulated the EV diffusion model in Boston using a discrete choice model (21). Results showed that EVs would share 1-22% of the entire vehicle market of Boston in 2030. Regarding factors affecting market share, financial incentive availability showed positive effects.
The geographical transferability of estimated data was also important for market analysis. Jensen et al. (2014) used Norwegian new car registration data from 2003 to 2013 to estimate the EV demand model in Denmark market (19), and used the results directly since lifestyle and economic conditions of the two countries were generally very similar. However Park et al. (2011) which used Japanese sale volume of HEVs to estimate a diffusion model for HFCV in Korea adjusted the imitation parameter based on other previously estimated models in the two countries (18).

The Bass model has been widely employed in studies related to new technologies, including those in the automobile industry, yet this approach has not been applied to understand the market adoption of AVs. Considering the advantages of this approach – it uses mathematical models and considers the influence of market size, user behavior and historical data from other products, and the assumptions and inputs can be easily modified and updated to better reflect the latest knowledge of the market and the technology – this study employs this model to study the market penetration pattern of AVs. The details of the methodology and assumptions are described in the following section.

METHODOLOGY

In this study, a Generalized Bass diffusion modeling approach is used to estimate the market penetration for AVs in the US, since the basic Bass model cannot consider influences of any external variables, i.e. effect of product price during time (18).

Historical sales information is required to estimate the generalized Bass model. Since no sales data would be available for brand new products, a similar technology/product would be selected and it is assumed that the new product will resemble the existing product in terms of user adoption pattern. For instance Park et al. (2011) estimated the market diffusion model of HFCVs for Korea, based on the data obtained for HFCVs in Japan with some adjustment to the local market (18).

For this study, our estimation is based on the historical sales data for HEV in the US. The assumption is that the market penetration pattern of the AVs would be similar as for the HEVs in the US market. The HEV technology is preferred over other automotive features such as automatic transmission or rear camera, because the latter features only changed a portion of the driving task to a limited degree, and there were not as much resistance when they were first introduced. On the other hand, the first years of HEV deployment have seen conservative and skeptical user adoption, as would be expected for AV adoptions. However, it should also be noted that HEVs would not be as revolutionize as AVs in changing the way people travel. To overcome this limitation, our study also used data from internet and cellphone adoption to adjust the diffusion model, which is discussed in more detail later in this section.

Amongst several factors which may affect the adoption behavior, AV technology price, US market technology acceptance rate and economic wealth are considered in this study. To estimate the generalized Bass model, historical price ratio of a representative HEV to a representative conventional vehicle is analyzed. For the technology acceptance taste of US consumers, the diffusion model used information based on internet subscription and cellphone consumption in the
To establish the basics for model estimation, it is assumed that the AV market diffusion are similar to the pattern for HEVs. The historical sales data of a representative HEV vehicle is collected and listed in Table 1. Toyota Prius has been selected as the HEV technology representative vehicle, because it is the best-selling HEV not only in the US, but in the whole world. Prius was launched in 1997 in Japan and three years later in the US. Shortly after, HEV Prius became the best-selling HEV for many years. Prius’s price has not changed for the first three years of sale in the US with a slight drop in the fourth year. Later the price raised in line with general inflation. Toyota Corolla was selected as the representative conventional vehicle, to consider the price ratio factor effect in the generalized Bass model. Corolla was selected because it has the same size and is manufactured by the same company as Prius, but also because of its high sales statistics. The sales and price data for Prius and Toyota Corolla were obtained from an online source (22).

To consider external effects and estimate β in Eq. 5, price ratio and new technology acceptance rate variables are incorporated into the function as below:

$$x(T) = 1 + \beta_1 \frac{P(t) - P(t-1)}{P(t-1)} + \beta_2 \frac{T(t) - T(t-1)}{T(t-1)}$$ \hspace{1cm} (6)

In which, $P(t)$ is Prius to Toyota Corolla price ratio during a sales period, t.

$$P(t) = \frac{Price \ of \ Prius}{Price \ of \ Conventional \ Vehicle \ (corolla)}$$ \hspace{1cm} (7)

As can be derived from Table 1, the price ratio is about 1.56 in 2001 and dropped to 1.34 in 2014, indicating that Prius was priced about 56% higher than a conventional vehicle when it was first introduced to the market, and then after 14 annual periods it decreased to about 34%. This trend is known as technology price dropdown.

$T(t)$ is the technology acceptance taste variable. For this study, it is estimated based on the data for internet subscribers and cellphone subscribers in the US market. It is reasonable to assume that the sales trend of AVs may not completely obey the HEV sales data, since AV technologies also involve considerable progress in the field of information technology. To account for consumer’s behavioral attitudes toward technology acceptance into the diffusion model, it is assumed that the AV market penetration should have some similarities with the historical trend of cellphone or internet users’ in the US.
In addition, the economic wealth of the population may also have influence on the user adoption of new technologies, therefore also incorporated into the diffusion model. Other data in Table 1 except vehicles information are collected from World Bank online source (23).

TABLE 1 Data for Generalized Bass Model Estimation

<table>
<thead>
<tr>
<th>Year</th>
<th>Prius Price (US$)</th>
<th>Toyota Corolla Price (US$)</th>
<th>Prius Annual Sales (1000)</th>
<th>Internet Subscribers (per 100 US people)</th>
<th>Cellphone Subscribers (per 100 US people)</th>
<th>Economic Wealth (GDP per capita-current US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>18,793</td>
<td>12,042</td>
<td>15.6</td>
<td>43.1</td>
<td>38.0</td>
<td>37,273.60</td>
</tr>
<tr>
<td>2002</td>
<td>18,793</td>
<td>12,042</td>
<td>20.1</td>
<td>49.1</td>
<td>45.0</td>
<td>38,166.00</td>
</tr>
<tr>
<td>2003</td>
<td>18,793</td>
<td>13,283</td>
<td>24.6</td>
<td>58.8</td>
<td>49.0</td>
<td>39,677.20</td>
</tr>
<tr>
<td>2004</td>
<td>18,687</td>
<td>13,374</td>
<td>54.0</td>
<td>61.7</td>
<td>55.0</td>
<td>41,921.80</td>
</tr>
<tr>
<td>2005</td>
<td>19,590</td>
<td>13,563</td>
<td>107.9</td>
<td>64.8</td>
<td>63.0</td>
<td>44,307.90</td>
</tr>
<tr>
<td>2006</td>
<td>20,006</td>
<td>13,859</td>
<td>107.0</td>
<td>68.0</td>
<td>68.0</td>
<td>46,437.10</td>
</tr>
<tr>
<td>2007</td>
<td>20,419</td>
<td>14,040</td>
<td>181.2</td>
<td>68.9</td>
<td>76.0</td>
<td>48,061.50</td>
</tr>
<tr>
<td>2008</td>
<td>21,064</td>
<td>14,131</td>
<td>158.6</td>
<td>75.0</td>
<td>82.0</td>
<td>48,401.40</td>
</tr>
<tr>
<td>2009</td>
<td>21,758</td>
<td>15,326</td>
<td>139.7</td>
<td>74.0</td>
<td>85.0</td>
<td>47,001.60</td>
</tr>
<tr>
<td>2010</td>
<td>20,330</td>
<td>15,417</td>
<td>140.9</td>
<td>71.0</td>
<td>89.0</td>
<td>48,374.10</td>
</tr>
<tr>
<td>2011</td>
<td>22,108</td>
<td>16,284</td>
<td>128.1</td>
<td>71.7</td>
<td>91.0</td>
<td>49,781.40</td>
</tr>
<tr>
<td>2012</td>
<td>22,560</td>
<td>16,570</td>
<td>147.5</td>
<td>69.7</td>
<td>94.0</td>
<td>51,456.70</td>
</tr>
<tr>
<td>2013</td>
<td>22,748</td>
<td>16,821</td>
<td>145.2</td>
<td>79.3</td>
<td>96.0</td>
<td>52,980.00</td>
</tr>
<tr>
<td>2014</td>
<td>22,748</td>
<td>16,944</td>
<td>98.6</td>
<td>84.2</td>
<td>96.0</td>
<td>54,629.50</td>
</tr>
</tbody>
</table>

Given all the information shown in Table 1, the generalized diffusion model for AV is estimated, without restricting the market size. Then sensitivity analysis are conducted to examine: how will the market size affect AV technology market penetration, and also how will price affect the market size and the diffusion process.

MODEL RESULTS

To estimate the generalized Bass diffusion models in this study, non-linear least square estimation method was used with SPSS software (24). The estimated coefficients of the models, including the basic model and the generalized model are summarized in Table 2. As a reference, the Bass model for conventional vehicles (auto) is also estimated based on data for the period of 1920-2014. The coefficients are shown in the first row. The second the third rows show the coefficients for the Bass and the generalized Bass model for HEVs. As explained, to bring US consumer’s technology acceptance taste into account, Bass model formulation is also applied on historical subscription data of internet and cellphone in the US, and the results are shown in the last two rows in Table 2.
Lavasani, Jin and Du

Price ratio and economic wealth are incorporated as external variables for the HEV generalized Bass model. For comparison purposes, the diffusion coefficients obtained from previous studies on the adoption of new automobile technologies are also summarized and presented in Table 3.

TABLE 2
Estimation Result for Bass Diffusion Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>m</th>
<th>p</th>
<th>q</th>
<th>Price ratio</th>
<th>Economic Wealth</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass (auto)</td>
<td>504,136,121</td>
<td>0.000242</td>
<td>0.091202</td>
<td></td>
<td></td>
<td>0.997</td>
</tr>
<tr>
<td>Bass (HEV)</td>
<td>1.650,320</td>
<td>0.010402</td>
<td>0.389704</td>
<td></td>
<td></td>
<td>0.997</td>
</tr>
<tr>
<td>G-Bass (HEV)</td>
<td>1,750,697</td>
<td>0.015459</td>
<td>0.341865</td>
<td>-1.314</td>
<td>8.913</td>
<td>0.999</td>
</tr>
<tr>
<td>Bass (Internet)</td>
<td>76%</td>
<td>0.006673</td>
<td>0.390604</td>
<td></td>
<td></td>
<td>0.992</td>
</tr>
<tr>
<td>Bass (Cellphone)</td>
<td>329,582,323</td>
<td>0.001725</td>
<td>0.264384</td>
<td></td>
<td></td>
<td>0.999</td>
</tr>
</tbody>
</table>

TABLE 3
Bass Model Parameters from Selected Studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Model</th>
<th>Vehicle technology</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massiani and Gohs (2015)</td>
<td>Bass model</td>
<td>EV</td>
<td>0.0019</td>
<td>1.2513</td>
</tr>
<tr>
<td>Massiani and Gohs (2015)</td>
<td>Bass model</td>
<td>LPG</td>
<td>0.0779</td>
<td>0.3718</td>
</tr>
<tr>
<td>Massiani and Gohs (2015)</td>
<td>Bass model</td>
<td>CNG</td>
<td>0.1187</td>
<td>0.0349</td>
</tr>
<tr>
<td>Jensen et al. (2014)</td>
<td>Bass model</td>
<td>EV</td>
<td>0.002</td>
<td>0.23</td>
</tr>
<tr>
<td>Cordill (2012)</td>
<td>Regression model</td>
<td>EV Prius</td>
<td>0.0016</td>
<td>1.4451</td>
</tr>
<tr>
<td>Cordill (2012)</td>
<td>Regression model</td>
<td>EV Hybrid Civic</td>
<td>0.0034</td>
<td>0.0631</td>
</tr>
<tr>
<td>Cordill (2012)</td>
<td>Regression model</td>
<td>EV Ford Escape</td>
<td>0.0367</td>
<td>0.4322</td>
</tr>
<tr>
<td>Park et al. (2011)</td>
<td>Generalized Bass Model</td>
<td>HCFV</td>
<td>0.0037</td>
<td>0.3454</td>
</tr>
</tbody>
</table>

Comparing the estimated innovation factors p across the models, it shows that the estimated value for HEV (0.010, and 0.015) in the US market is very high. The intuitive meaning of p factor represents how quickly the new technology is being adopted by the users. Looking at Tables 2 and 3, the largest values of p factor are for CNG and HEVs. Simply, it can be seen that these technologies were not that revolutionary. When HEVs were introduced in the US market around year 2000, the consumers were relatively familiar with the product. On the contrary, the p factor for conventional automobile adoption is about 0.0002, which indicates that the market was more conservative when automobiles were first introduced around 1920. The adoptions of cellphone and internet reveal a similar case (with p value around 0.00067 and 0.0017, respectively). Considering that AV technology is also a revolution in the automobile industry which needs several years to be accepted by innovators, and taking into account the diffusion patterns of other technologies, a value of 0.001 for the p-factor for AV technology was chosen for this study. The assumption is that AV adoption would be more optimistic than the conventional automobile adoption but more conservative than EVs, internet and cellphone adoptions. However it should be noted that this assumption can be updated when more knowledge is available about user acceptance.

The imitation factor q estimates of both base Bass and generalized models for HEV are very close to the average imitation factor values of previous studies. Unlike the innovation factor which mostly deals with consumer’s risk taking capacity, imitation factor represents consumer’s cultural
and lifestyle preferences. The intuitive meaning of q factor represents how quickly the technology may be adopted by the imitators (followers after the innovators). It can be seen that the innovation factors vary largely for different technologies while the imitation factors are relatively close as shown in Table 2. This factor is estimated to be 0.0912 for conventional automobiles in the US, which indicates that society lifestyle and welfare can affect the imitation factor considerably. In this study, the estimated value of 0.341865 is kept for the AV diffusion model.

The estimated market size for HEV does not seem reasonable for AV (the m parameter), compared to the entire vehicle market in the US. Up to 2012, a total of 254 million vehicles have been registered in the US. The diffusion model for automobiles recommends a saturation market size of approximately 500 million vehicles (cumulative from 1920). AV technology will bring considerable changes in people’s life, i.e. increases social welfare, and enhances safety. Accordingly, the market size for AV would be considerably large. Considering the usage of internet and the market size for cellphones, it shows the potential and capacity of US consumers in adopting new technologies, especially when they are affordable for them. Although AV technology may not be as affordable at the first periods of sales, it can dictate itself into people’s life when price dropdown occurs. Based on the usage of internet, this study assumes a market size of 75% of households for AVs. Considering that one of the most promising features of AVs is the potential to facilitate carpool/shared use and more efficient use of the vehicles, the market size is considered as household based instead of individual based. Although the U.S. households commonly enjoy multiple vehicles today, AV technology is likely to reduce vehicle ownership significantly. Given that there are 115,610,216 households in the US based on census data (25), the market size for AV is estimated to be close to 87 million vehicles. Again, this assumption should be updated when more information is available regarding vehicle ownership. The sensitivity analysis presented later also shows the impacts of market size on market penetration of AVs.

The estimated price ratio coefficient is negative which is reasonable and means a decrease in price ratio will lead to increase in the cumulative sale. The price ratio decreased from 1.56 to 1.34 for HEV relative to conventional vehicles during a 15-year period. It is anticipated that initially AVs would have a considerably higher price than conventional vehicles, however this price ratio will decrease after some years and the innovation will become affordable for medium income level households. Economic wealth showed significant effect on HEV sales. Therefore this variable is also incorporated into the model for AV adoption assuming that economic wealth has similar impacts on AV adoption as on HEV. The final adopted parameters for AV market diffusion is presented in Table 4. The corresponding diffusing curve is illustrated in Figure 2.

<table>
<thead>
<tr>
<th>TABLE 4</th>
<th>AV Market Diffusion Model Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>M</td>
</tr>
<tr>
<td>Bass (AV)</td>
<td>86,707,662</td>
</tr>
</tbody>
</table>
Figure 2 shows the market penetration prediction based on the assumptions indicated above, and considering less than 100,000 sold vehicles per year as market saturation point. Assume that AV sales start at year 2025, the projection shows 1.3 million vehicles be sold in five years, and the usage may increase to 36 million in another ten years. The curve shows that the market will be saturated in 2059 when approximately 87 million AVs would have been sold. This projection seems to be in accordance with Litman’s study (2014), which predicted that in 2050s, 80-100% of sold cars would be AVs (11).

SENSITIVITY ANALYSIS

Sensitivity analysis is a useful tool in identifying model uncertainties. The assumption is to keep all other variables constant, and see how model results change based on the value changes in one factor of interest. In this study, the market size and price ratio values may change considerably. To see how these factors may change the adoption pattern of AVs, sensitivity analysis is conducted for both market size and price ratio variables.

In terms of market size, the values are changed between 20-140% of US households. Market penetration curves estimated based on different market sizes are illustrated in Figure 3. The figure shows much higher adoption rates when market size is larger, indicated by the deeper slopes. While the saturation point does not differ much across the market size levels, with the soonest occurring around 2055 with 20% market size (about 23 million vehicles) and the latest around 2060 with 140% market size (about 162 million vehicles).
FIGURE 3 Sensitivity analysis results on market size.

Regarding price ratio between AVs and conventional vehicles, according to a study by Information Handling Services (his) Automotive, the AV technology will add $7,000 to $10,000 to a conventional vehicles price in 2025 (26). For this study, the generalized Bass model is only able to consider the effect of the initial price ratio when the new product is first introduced. Although the prices for both AVs and conventional vehicles may drop, and the difference between their prices may drop eventually, the sensitivity analysis only reflects the effects on the initial price ratio.

Four different values were chosen to represent the initial additional cost for AVs, $3,000, $5,000, $10,000, and $30,000 for sensitivity analysis. The additional cost of $30,000 is not very likely to happen in reality, but was chosen to test how the model reacts to this extreme value. The diffusion curves are presented in Figure 4.

As shown in Figure 4, the penetration curves are very close, except that the diffusion curve is shifted to one year later when additional cost changes from $10,000 to $30,000. This could indicate that the external variables have less effect in comparison with the three major variables (market size, the innovation factor, and the imitation factor) in the Bass model. This is a limitation of the Bass model, which is not able to consider external variables’ effect on market diffusion very well as in accordance with Bass (27). Indeed this is a limitation of this study. There are several factors affecting AV market penetration, i.e. legal frameworks, personal preferences, technology, and price, etc. Future studies will be pursued to improve the modeling approach to incorporate external factors.
CONCLUSIONS

A market diffusion model is estimated in this study to examine the penetration pattern of AVs. Understanding the market penetration pattern is critical to policy makers and planners to manage and facilitate the adoption of new technologies. Since AVs have not been introduced to the market, this paper used data from previous technologies. Particularly, sales and price data on conventional automobiles and HEVs, and the usage of internet and cellphones in the US are collected and used for model estimation.

Based on the adoption patterns of previous technologies, two values representing the innovation factor (risk taking capacity) and the imitation factor (culture and lifestyle preferences) are selected for AV market penetration. In addition, external variables such as the price of the AVs relative to conventional vehicles, and economic wealth are incorporated into the model. The market size for AV adoption is determined considering household as the unit. The model results and the produced penetration curve reveal interesting results. Assuming AVs become available in 2025, the market may reach about 8 million in ten years, and saturation may occur in 35 years assuming a 75% market size.

Given the uncertainties in market size and price of AVs, sensitivity analysis are also conducted to understand the possible impacts of these factors on user adoption. In general larger market size leads to higher adoption rate, while the initial cost of AVs relative to conventional vehicles does not seem to influence the diffusion process much.
This paper contributes to the literature by providing a quantitative modeling approach to AV market penetration estimation based on past technology adoption experiences. The study results provide valuable insights in terms of the possible market diffusion patterns and the impacts of different factors on user adoption. The analysis provided in this paper can benefit from further research in refining and updating the assumptions applied, such as regarding the market size, vehicle ownership and technology acceptance tastes, etc. Future studies using SP surveys could be a good approach to advancing the understanding in market penetration for AVs in terms of public acceptance and user preferences focusing on detailed market segments. One major limitation of this study is that the Bass model does not considers external variables very well. Future improvements on the modeling approach will be further pursued.

REFERENCES

