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ABSTRACT 1 
Crash data on Alabama Interstates were collected across a five-year time period from 2009 to 2 

2013, and true wrong-way driving (WWD) crashes were identified using the hardcopy of crash 3 

reports and existing maps. The crash data contained 18 explanatory variables representing the 4 

driver, temporal, vehicle, and environmental information. A Firth’s penalized-likelihood logistic 5 

regression model was developed to examine the influence of the explanatory variable on the 6 

dichotomous dependent variable (type of crash, i.e., WWD vs. non-WWD). This model is an 7 

appropriate tool to control the influence of all confounding variables on the probability of WWD 8 

crashes while considering the rareness of the event (i.e., WWD). A separate model using the 9 

standard binary logistic regression was also developed. Two information criteria (AIC and BIC) 10 

obtained from both developed models indicate that for our database, Firth’s model outperforms 11 

the standard binary logistic model and provides more reliable results. Using Firth’s model, 12 

explanatory variables including month of the year, time of the day, driver age, driver mental and 13 

physical condition, driver’s residency distance, vehicle age, vehicle damage, towing condition, 14 

airbag deployment status, and roadway condition were found to characterize WWD crashes. 15 

Based on the obtained odds ratio (OR), this paper discusses the various effect of the identified 16 

variables and recommends several countermeasures for policy makers in order to reduce the 17 

WWD issue on Alabama Interstates.  18 

 19 

 20 

Keywords: Wrong-way driving (WWD), Interstate highways, Statistical characteristics, Firth’s 21 

penalized-likelihood logistic regression model, Model comparison  22 
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INTRODUCTION 1 
While some crash types gain increasing attention due to their prevalence (e.g., run-off-the-road 2 

and intersection-related crashes), wrong-way driving (WWD) crashes receive special emphasis 3 

due more to their severity than to their frequency. This type of crash can occur on any one-way 4 

roadway; however, the concentration of most studies has been on controlled-access highways 5 

(i.e., freeways, expressways, and Interstate highways) as the speed limit is relatively high and –6 

given the manner of the WWD crash, which is mostly head-on or opposite-direction 7 

sideswipe − the resulting outcome would be more severe (1). 8 

To obtain a better understanding of the importance of the problem, the Fatality Analysis 9 

Reporting System (FARS) database was used to identify WWD crashes within a ten-year period 10 

(2004-2013) throughout the United States (U.S.) (2). An average of 265 fatal WWD crashes 11 

occurred per year on U.S. controlled-access highways, in which 355 people perished, resulting in 12 

almost 1.34 fatalities per WWD fatal crash. The significance of these kinds of crashes 13 

is corroborated when this number is compared to the fatalities per fatal crash rate of 1.10 for all 14 

other crash types, which translates to 24 more fatalities per 100 fatal crashes for WWD crashes 15 

than for fatal crashes in general. Given this evidence, it becomes necessary to identify the factors 16 

that best describe the WWD crashes and improve our knowledge of the underlying factors 17 

involved in WWD occurrence. 18 

The National Transportation Safety Board (NTSB) has asked the Office of Safety 19 

Operations of the Alabama Department of Transportation (ALDOT) to develop a comprehensive 20 

highway safety program that incorporates, at a minimum, the program elements outlined in the 21 

National Highway Traffic Safety Administration (NHTSA) Highway Safety Program Guidelines 22 

(H-12-46) with a special focus on WWD crashes. Therefore, the state of Alabama decided that 23 

an in-depth investigation of WWD crashes on Alabama Interstates could provide a better 24 

understanding of such events. The purpose of this study is to review these severe crashes in 25 

depth, to recognize the contributing factors, to delineate between WWD crashes and non-WWD 26 

on Interstates, and to provide safety countermeasures and recommendations based on the 27 

obtained results that are specific to Alabama. 28 

The rest of this paper is organized as follows. A review of the existing literature is 29 

provided next. The data used as well as the procedure to identify and verify true WWD crashes is 30 

presented. The methodology used in this paper, Firth’s model, and its difference from standard 31 

binary logistic model (hereinafter “binary model”) is described. This model then is applied to our 32 

data and the parameter estimates and odds ratio (OR) are presented. Further, the same data was 33 

analyzed with binary model to make a comparison between these two models. Based on the 34 

obtained results, several safety countermeasures are proposed. 35 

 36 

LITERATURE REVIEW 37 
Numerous studies have documented, more empirically than statistically, the contributing factors 38 

regarding WWD crashes on controlled-access highways (e.g., Interstates). While these studies 39 

were rare before the 2000s, various researchers started to examine these factors in the early 40 

2000s, especially in Texas and Illinois; however, this topic of safety has gained renewed 41 

attention in recent years in both the U.S. and other countries. Although the majority of these 42 

studies have tried to use simple descriptive statistics to identify general characteristics of WWD 43 

(e.g., see 3−6), several studies have been more specific in the database used or the methodology 44 

developed. 45 
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In a recently published paper by Kemel (7), a database was used to identify 266 crashes 1 

that involved WW drivers from 2008 to 2012 on French divided highways, and their 2 

characteristics were compared to those of other crashes (22,120 crashes) on the same highways 3 

during the same time period. This empirical research was then followed by a binary model to 4 

make it possible to account for the effect of all the variables simultaneously. The results showed 5 

that rare, severe WWD crashes are more likely to occur during nighttime conditions (12-6 AM). 6 

Regarding the driver’s age, this type of crash is more prevalent among drivers 65 and older, 7 

which is consistent with the findings of the majority of existing literature. Based on this study, 8 

other characteristics of WW drivers that contribute to their likelihood of becoming involved in a 9 

WWD crash were identified, including whether they are intoxicated, are local drivers (and not in-10 

transit), and are driving passenger cars alone (without any passengers). However, the database 11 

only shows around 1.2% of events (266 WWD vs. 22,120 non-WWD crashes), which may bias 12 

the results of a binary model. 13 

Zhou et al. (8) also collected and analyzed WWD crashes on Illinois freeways over a six-14 

year time period from 2004 to 2009. In their study, WWD crashes were characterized based on 15 

three different aspects: the crash (e.g., temporal distribution, roadways characteristics), the 16 

vehicle (e.g., characteristics, operation), and the driver (e.g., age, condition). Their study showed 17 

that a large proportion of WWD crashes occurred during weekends from 12 to 5 AM. While 18 

nearly two-thirds of WW drivers were driving under the influence (DUI), the authors suggested 19 

that this number might be even higher as many drivers either refused to take the sobriety test or 20 

had no test results recorded in the reports. This study revealed that younger drivers (under 25) 21 

are also overrepresented just like older drivers (above 65). Other contributions of their study 22 

include a method to identify entry points and to rank different interchange types based on the rate 23 

of WWD entries and a guidebook (9). 24 

Lathrop et al. (10) explored a 15-year dataset (1990-2004) for fatal crashes on New 25 

Mexico’s Interstates. Their sample was composed of 875 fatal non-WWD crashes and 49 fatal 26 

crashes, which had resulted in 1,092 and 79 fatalities, respectively. Various characteristics of 27 

fatal WWD crashes, including decedent demographics, occupant status, safety equipment use, 28 

and roadway and environmental conditions, were compared to those of other non-WWD fatal 29 

crashes as a comparison group. Driver alcohol consumption was an affecting factor − accounting 30 

for 60% of WWD crashes − as was darkness. It was also identified that WWD vehicle occupants 31 

are less likely to be wearing their seatbelts during crashes, which intensifies crash severity.  32 

Another non-U.S. study conducted by Xing (11) in Japan, analyzed the characteristics of 33 

both WWD crashes and incidents with an emphasis on crashes. In doing so, 4,769 WWD 34 

incidents and 133 WWD crashes over five years (2005-2009) were considered. This study’s 35 

database has its advantage compared to that of other studies as it contains more records; however, 36 

its disadvantage is that it lacks interviews with WW drivers and therefore lacks other 37 

supplementary information. Other than confirming the findings of previous studies, the 38 

researcher sought to elaborate more on the application of Intelligent Transportation System (ITS) 39 

technologies, such as roadside WW navigation alert systems and WW warning systems with 40 

road-to-vehicle communication.  41 

The literature review showed that most recent studies use simple descriptive statistics to 42 

identify contributing factors to WWD crashes. Few have focused on comparing WWD crashes 43 

with non-WWD crashes to test the significance of the identified contributing factors, which can 44 

be done using logistic regression models. There has been a myriad of previous research 45 

investigating the effect of several factors on one particular outcome in the field of traffic safety 46 
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using logistic regression models (12−17). In this paper, a new logistic method – Firth’s 1 

penalized-likelihood logistic regression – is used to characterize WWD crashes while accounting 2 

for the effect of all confounding parameters. This method is a generalization of the maximum 3 

likelihood estimate (MLE) models. The advantage of this type of logistic regression model is that 4 

it can handle the bias in the calculations due to the small sample size and rareness of the event 5 

(which is the case in this study) satisfactorily. This method has specifically been used in medical 6 

science formerly. For example, Xu et al. (18) analyzed a sample size of 67 patients with just 28 7 

patients developed hypertension, which is pretty small sample size for MLE method. In another 8 

study by Mulla et al. (19), they analyzed a sample of 138 patients with only 16 (11.6%) having 9 

preeclampsia, that may cause computational problems when being analyzed with MLE methods. 10 

 11 

DATA 12 
This study’s approach to identifying WWD crashes is twofold: identifying possible WWD 13 

crashes and verifying true WWD crashes. The first step used pertinent variables to separate 14 

possible WWD crashes from the total crashes in the database. Afterwards, a hardcopy of the 15 

crash reports for each of these possible WWD crashes was reviewed carefully, and the true 16 

WWD crashes were identified based on crash narratives as well as diagrams and locations. Three 17 

variable categories – at the roadway, vehicle, and person levels – were used to define WWD 18 

movements in the crash database.  19 

 20 

Wrong-Way Driving Identification 21 
The statistical data source used in this study is the Alabama crash records database accessed 22 

through the Critical Analysis Reporting Environment, also known as CARE, software (20). This 23 

software is designed to help identify inherent statistical characteristics of various kinds of 24 

crashes from different perspectives, such as driver, roadway, and vehicle. This software also 25 

enables researchers to apply filters and extract specific kinds of crashes for further analysis, 26 

although WWD crashes cannot be directly extracted from the database. Therefore, it was 27 

necessary to define appropriate filters on variables to separate possible WWD crashes for further 28 

investigation based on the crash diagram, geographic coordinates, and narrative. All of the 29 

variables in the CARE system were reviewed, but only those that could help identify possible 30 

WWD crashes were investigated. This effort recognized contributing circumstances, maneuvers, 31 

and citations issued for either the crash, the causal unit (CU), or the second vehicle (V2), which 32 

may define any possible WWD movements on roadways. Table 1 summarizes the variables as 33 

well as the corresponding values used to identify possible WWD crashes for further examination. 34 

This filter was then applied to Interstate, federal, and state highways in the hierarchy of 35 

highway classification in CARE, resulting in 132, 525, and 799 possible WWD crashes (1,456 36 

altogether), respectively. The reason why this filter was also applied to federal and state 37 

highways (as non-Interstate highways) was that the preliminary research on WWD crashes 38 

revealed that some true WWD crashes happened on exit ramps were coded as crashes on non-39 

Interstate highways (depending on the classification of the crossroad connected to the exit ramp). 40 

 41 

Wrong-way Driving Verification 42 
To verify the actual WWD incidents on Interstates and their access ramps, crash hardcopies for 43 

those 1,456 possible WWD crashes were requested from the ALDOT. The first step was to 44 

confirm that the crashes had occurred at the target locations. To this end, the crash diagrams 45 
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were checked, or in the case of no diagram, the crashes were located on Web map services, such 1 

as Google Maps. 2 

 3 

TABLE 1 Summary of Variables and Their Values to Identify Possible WWD Crashes 4 
Variable Value(s) 

Primary Contributing Circumstance - Traveling Wrong Way/Wrong Side 

- Wrong Side of Road 

CU Contributing Circumstance - Traveling Wrong Way/Wrong Side  

- Wrong Side of Road 

V2 Contributing Circumstance - Traveling Wrong Way/Wrong Side  

- Wrong Side of Road 

CU Vehicle Maneuvers - Wrong Side of Road  

- Wrong Way on One Way 

V2 Vehicle Maneuvers - Wrong Side of Road 

- Wrong Way on One Way 

CU Citation Issued - Wrong Side of Road 

V2 Citation Issued - Wrong Side of Road 

 5 

The next step was to review the narrative description for all the remaining crash reports 6 

in order to confirm that each crash was truly the result of a WWD maneuver. The actual WWD 7 

crashes were confirmed with respect to key phrases in the narratives such as “traveling the wrong 8 

way”, “traveling northbound on the southbound lanes” or “turned right on the northbound exit 9 

ramp.” Altogether, 93 crashes were verified as true WWD crashes. Our investigation showed that 10 

the majority of unverified WWD crashes on Interstate highways were those that happened after a 11 

vehicle crossed the median and struck an oncoming vehicle immediately afterwards. For federal 12 

and state highways the majority were those driving on the wrong side of the road, as the code to 13 

nominate possible WWD crashes contains “wrong side” that inadvertently brings a lot of non-14 

WWD crashes into the database.  15 

Table 2 represents the total and fatal crashes for all Interstate and WWD crashes along 16 

with their percentage in Alabama from 2009 to 2013. As can be seen from this table, WWD 17 

crashes comprise less than 0.2% of Interstate crashes (indicating a rare event); however, almost 4% 18 

of all Interstate fatal crashes are due to WWD. Finally, a spreadsheet of crash data with rows 19 

(representing each crash record) and columns (representing each attribute in the crash record) 20 

was prepared for additional analysis. 21 

 22 

TABLE 2 Number of Interstate and WWD Crashes 23 

Year 2009 2010 2011 2012 2013 Total 

Interstate Crashes 11,023 11,433 11,967 11,258 11,358 57,039 

WWD Crashes 17 16 25 16 19 93 

Percent 0.15% 0.14% 0.21% 0.14% 0.17% 0.16% 

 

Interstate Fatal Crashes 64 79 76 73 69 361 

WWD Fatal Crashes 4 2 4 2 2 14 

Percent 6.3% 2.5% 5.3% 2.7% 2.9% 3.9% 

 24 
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Descriptive Statistics 1 
The explanatory variables used in this study are cross-tabulated for both WWD and non-WWD 2 

crashes on Interstate highways and are presented in percentage in Table 3. It should be noted that 3 

the Other/Unknown categories for the variables are not presented in this table; therefore, the total 4 

number for some variables under the columns may not sum up to 100%. In addition, since the 5 

number of WWD crashes is less than 100, the percentages for this category are not reported to 6 

decimals. When looking at this table, a few points are worthy of mentioning. For example, 26% 7 

of WW drivers are older than 65 while this age group are responsible for 7.9% of other crashes. 8 

The share of DUI drivers is also considerably high such that almost half of the WW drivers were 9 

intoxicated. WWD crashes are also disproportionately more frequent during evening and night. 10 

Almost 80% of WWD crashes have happened during these time periods that may be reflective of 11 

the possible abnormal driving conditions (e.g., DUI, drowsy, fatigue). 12 

 13 

TABLE 3 Descriptive Statistics Distribution of WWD and Non-WWD Crashes on Alabama 14 

Interstates 15 
Explanatory Variable Category WWD Crashes (n=93)  Other Crashes (n=57,039) 

Driver Age Less than 24 18 25.7 

25 to 34 years 23 22.7 

35 to 44 years 15 16.3 

45 to 54 years 9 13.8 

55 to 64 years 4 9.3 

65 years of over 26 7.9 

Driver Gender Male 67 57.8 

Female 24 36.5 

Driver Condition Apparently Normal 25 84.5 

DUI 46 3.9 

Physical Impairment 4 0.1 

Asleep/Fainted/Fatigued 1 3 

Illness 1 0.4 

Driver Residency Distance Less than 25 Miles 59 48.9 

Greater than 25 Miles 28 44.2 

Month of the Year January 4 7.9 

February 9 7.8 

March 14 8.7 

April 3 7.6 

May 16 8.8 

June 7 8.4 

July 7 9.1 

August 4 8.1 

September 7 8 

October 7 8 

November 14 8.6 

December 10 9 

Day of Week Weekday 53 74.6 

Weekend 47 25.4 

Time of the Day Morning (6-12) 13 29.3 

Afternoon (12-18) 8 41.9 
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Evening (18-24) 33 18.4 

Night (0-6) 46 10.3 

Vehicle Age Less than 5 years 16 25.7 

5 to 15 years 60 58.2 

More than 15 years 17 10.4 

CU Vehicle Damage Minor/None Visible 10 28.7 

Major Not Disabled 12 23.2 

Major and Disabled 70 44.4 

Vehicle Towed? No 15 49.5 

Yes 82 48.8 

CU Driver Seatbelt Use Belt Used 67 89.4 

Belt Not Used 9 2.1 

CU Driver Airbag Status Not Deployed 32 69.2 

Deployed 48 14.8 

Setting Rural 38 41.2 

Urban 62 58.8 

Lighting Condition Daylight 24 69.2 

Dark, Road Lit 27 9.8 

Dark, Road Not Lit 44 16.7 

Dawn 2 1.5 

Dusk 2 2.6 

Weather Condition Clear/Cloudy 90 77.9 

Fog/Mist 3 2.2 

Precipitation 7 19.6 

Roadway Condition Dry 90 72.3 

Wet 10 27.1 

 1 

METHODOLOGY 2 

Firth’s Penalized-Likelihood Logistic Regression 3 
The aim of this paper is to identify the explanatory variables that differentiate WWD crashes 4 

from other crashes on Interstates, which can be handled by the introduction of logistic regression 5 

analysis. Given the type of dependent variable in this study (WWD vs. non-WWD crashes), a 6 

binary logistic regression is suggested. When looking at the data, three conditions are visible: the 7 

rarity phenomenon, unbalanced data, and disproportionality of observations and explanatory 8 

variables. First, for the rareness of the events, only 0.16% of Interstate crashes are due to WWD. 9 

This rareness of events in binary logistic regression is known to be especially difficult to explain 10 

and predict. Furthermore, most well-known statistical analysis methods, e.g., binary logistic 11 

regression, can be heavily affected by this phenomenon and, consequently, the probability of the 12 

rare event will be sharply underestimated (21). Second, some categories for WWD crashes have 13 

very low frequency, which can cause problems in computations (22). Third, statistical guidelines 14 

recommend having at least 10 observations per each explanatory variable in order to make the 15 

model and calculate the parameter estimates (23). These issues might limit the applicability of 16 

the standard logistic regression, as it uses the MLE, which is known to suffer from the small-17 

sample bias. In this situation, a penalized-likelihood approach is proposed (i.e., Firth’s logistic 18 

regression), which reduces the small-sample bias of the MLE method (24 and 25).  19 
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Firth (24) introduced a penalized MLE into the binary model that can offset the bias 1 

involved in MLE. As we know, in the binary model, the log-likelihood can be formulated as an 2 

exponential family model as follows: 3 

 4 

𝑙(𝛽) = 𝑡𝛽𝑛 − 𝐾(𝛽𝑛),     𝑛 = 1, … , 𝑘        (1) 5 

 6 

where t is the vector of observed sufficient statistics, 𝛽𝑛  is the regression parameter to be 7 

estimated, and k is the number of parameters estimated. However, the score (gradient) function, 8 

which is derivative of the log-likelihood, will be used to calculate the MLE of the parameter 𝛽𝑛 9 

as follows: 10 

 11 

𝑈(𝛽𝑛) = 𝑙′(𝛽𝑛) = 𝑡 − 𝐾(𝛽𝑛),     𝑛 = 1, … , 𝑘       (2) 12 

 13 

To penalize the MLE, Firth replaced the score function of the binary model by a modified score 14 

function as follows: 15 

 16 

𝑈(𝛽𝑛)∗ = 𝑈(𝛽𝑛) + 𝛼𝑛,     𝑛 = 1, … , 𝑘       (3) 17 

 18 

where 𝛼𝑛 has the nth entry and is formulated as: 19 

 20 

𝛼𝑛 =
1

2
𝑡𝑟 [𝐼(𝛽)−1 𝜕𝐼(𝛽)

𝛽𝑛
] ,     𝑛 = 1, … , 𝑘       (4) 21 

 22 

where tr is the trace function and 𝐼(𝛽) is the Fisher’s information matrix, which is minus the 23 

second derivative of the log-likelihood. Using this method, the MLE estimate will be shrunk 24 

towards zero. It is believed that compared to the broad class of generalized linear models on 25 

small samples, Firth’s method is precise in estimating coefficients and reliable in calculating 26 

confidence intervals in terms of coverage probabilities (26). 27 

After calculating parameter estimates for statistically significant variables, the odds ratio 28 

(OR) as a relative measure of effect and the corresponding confidence interval (CI) were 29 

calculated. The OR can provide a better understanding of the direction and magnitude of the 30 

change in the probability of the dependent variable with one unit change in the specific variable. 31 

In other words, when OR is greater than one, the study group (here, WWD crashes) is more 32 

likely to have the specific characteristic (defined in the category) than the reference category. A 33 

similar explanation applies to OR of less than one. 34 

 35 

Model Comparison 36 
Given the difference in the score functions of the binary model and Firth’s model, a comparison 37 

between the outputs of these two models can be made. In doing so, two popular information 38 

criteria (Akaike Information Criterion, or AIC, and Bayesian Information Criterion, or BIC) for 39 

comparing maximum likelihood models were used. The AIC and BIC can be formulated as 40 

follows: 41 

 42 

𝐴𝐼𝐶 = −2𝐿𝐿𝐹𝑢𝑙𝑙 + 2𝑘         (5) 43 

 44 

𝐵𝐼𝐶 = −2𝐿𝐿𝐹𝑢𝑙𝑙 + ln(𝑁) × 𝑘        (6) 45 

 46 
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where 𝐿𝐿𝐹𝑢𝑙𝑙  is the (penalized) log-likelihood of the full model with statistically significant 1 

explanatory variables, k is the number of parameters estimated in the final model, and N is the 2 

number of observations (57,132 observations). In addition to comparing the model fit, these two 3 

measures can also account for the complexity of the model by penalizing the criterion for the 4 

number of explanatory variables included in the model. This penalization is carried out by either 5 

2𝑘 or ln(𝑁) × 𝑘 terms in the equations. Having the models fit on the same dataset, the model 6 

with lower AIC and BIC is considered to outperform the other. 7 

 8 

RESULTS AND DISCUSSION  9 
Previously, the descriptive statistics of the explanatory variables for each type of crash on 10 

Interstates were presented. In this section, these variables will be put into one model for 11 

multivariate analysis in order to identify the effect of the explanatory variables on the type of 12 

crash altogether. In doing so, Firth’s model was found more appropriate than binary model given 13 

the nature of the data. The empirical results of this study are presented next. These results 14 

include the parameter estimates obtained from Firth’s model and the interpretation of these 15 

estimates. Moreover, the same dataset was used to fit a binary model and the parameter estimates 16 

for this model is also presented. AIC and BIC values for both of these models are calculated and 17 

a comparison between these two models are made. 18 

The R software package “logistf” was exploited as a comprehensive tool to estimate the 19 

effect of various contributing factors on the probability of WWD crashes (27). First, a model was 20 

fit with all possible contributing factors. Subsequently, a backward elimination procedure based 21 

on the penalized-likelihood ratio test (as is the suitable procedure for nested models) was 22 

employed to produce a final model that best explains the dependent variable. A forward selection 23 

process also yielded a similar result. Table 4 summarizes the analysis results of the Firth’s model, 24 

including parameter estimates along with their corresponding standard errors, OR and 25 

corresponding 95% confidence intervals.  26 

The analysis of the crash characteristics is performed by categorizing the information 27 

about each crash into four major groups – time information, responsible driver, vehicle 28 

information, and environmental condition. Each of these categories are discussed in the 29 

following subsections. The Wald chi-square statistic of 336.7 with 31 degrees of freedom, which 30 

is substantially larger than the respective chi-square values at any reasonable confidence level, 31 

demonstrates that the alternative hypothesis (i.e., “the current model is true”) is accepted. 32 

Consequently, the explanatory variables given in the model affect the type of crash, or the model 33 

with independent variables is statistically better than the model with only the intercept (the null 34 

model). 35 

The same data was used to develop a binary model and parameter estimates and ORs 36 

were calculated. Having these two models (Firth’s model and binary model) on the same data, 37 

AIC and BIC were calculated using equations 5 and 6 and are presented in Table 4. As can be 38 

seen in this table, Firth’s model yields lower values for both AIC and BIC, proving better fit 39 

compared to the binary model on our imbalanced data. Moreover, the standard error of parameter 40 

estimates are generally lower in Firth’s model, indicating a more accurate model compared to the 41 

binary model. 42 

 43 

 44 

 45 

 46 
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TABLE 4 Final Firth’s and Binary Model Results 1 

Explanatory Variable 
Firth’s Model Standard Binary Logistic Model 

β S.E. OR (95% CI) β S.E. OR (95% CI) 

Month of the Year             

January – – Reference – – Reference 

February 0.76 0.60 2.15 (0.66; 6.96) 0.82 0.63 2.27 (0.66; 7.81) 

March 1.16* 0.56 3.19 (1.06; 9.65) 1.24* 0.59 3.47 (1.09; 11.06) 

April -0.27 0.73 0.76 (0.18; 3.19) -0.32 0.78 0.73 (0.16; 3.38) 

May 1.24* 0.56 3.47 (1.16; 10.37) 1.33* 0.59 3.80 (1.2; 11.96) 

June 0.46 0.63 1.58 (0.46; 5.44) 0.49 0.66 1.64 (0.45; 6.03) 

July 0.55 0.63 1.73 (0.5; 5.96) 0.59 0.66 1.80 (0.49; 6.59) 

August 0.19 0.68 1.21 (0.32; 4.63) 0.19 0.72 1.21 (0.29; 5) 

September 0.40 0.64 1.49 (0.43; 5.16) 0.44 0.67 1.55 (0.42; 5.72) 

October 0.39 0.63 1.48 (0.43; 5.09) 0.43 0.66 1.53 (0.42; 5.63) 

November 1.27* 0.56 3.56 (1.18; 10.74) 1.36* 0.59 3.88 (1.22; 12.35) 

December 0.85 0.59 2.35 (0.74; 7.45) 0.92 0.62 2.51 (0.75; 8.42) 

Time of the Day             

Morning (6-12) – – Reference – – Reference 

Afternoon (12-18) -0.79 0.47 0.45 (0.18; 1.13) -0.82 0.48 0.44 (0.17; 1.13) 

Evening (18-24) 1.05** 0.35 2.85 (1.43; 5.65) 1.08** 0.36 2.94 (1.46; 5.91) 

Night (0-6) 1.70** 0.35 5.50 (2.75; 10.98) 1.74** 0.36 5.72 (2.83; 11.56) 

Driver Age             

Less than 24 – – Reference – – Reference 

25 to 34 years -0.07 0.31 0.93 (0.51; 1.71) -0.07 0.31 0.93 (0.5; 1.72) 

35 to 44 years 0.07 0.34 1.08 (0.55; 2.11) 0.06 0.35 1.06 (0.53; 2.11) 

45 to 54 years -0.02 0.41 0.98 (0.44; 2.18) -0.07 0.42 0.94 (0.41; 2.14) 

55 to 64 years 0.00 0.53 1.00 (0.36; 2.8) -0.10 0.55 0.91 (0.31; 2.69) 

65 years of over 2.21** 0.33 9.07 (4.8; 17.16) 2.24** 0.33 9.37 (4.91; 17.89) 

Driver Condition             

Apparently Normal – – Reference – – Reference 

DUI 2.16** 0.26 8.64 (5.21; 14.32) 2.18** 0.26 8.82 (5.29; 14.69) 

Physical Impairment 4.03** 0.63 56.47 (16.56; 192.63) 4.00** 0.65 54.61 (15.14; 197) 

Asleep/Fainted/Fatigued -0.80 0.84 0.45 (0.09; 2.34) -1.20 1.02 0.30 (0.04; 2.24) 

Illness 1.46 0.87 4.30 (0.79; 23.44) 1.09 1.04 2.98 (0.39; 23) 

Driver Residency Distance             

Less than 25 Miles – – Reference – – Reference 

Greater than 25 Miles -0.59* 0.24 0.55 (0.35; 0.88) -0.61* 0.24 0.54 (0.34; 0.87) 

              

Less than 5 years – – Reference – – Reference 

5 to 15 years 0.38 0.27 1.47 (0.87; 2.46) 0.40 0.27 1.49 (0.88; 2.52) 

More than 15 years 0.76* 0.35 2.15 (1.09; 4.23) 0.77* 0.35 2.15 (1.08; 4.29) 

Vehicle Damage             

Minor/None Visible – – Reference – – Reference 

Major Not Disabled 0.27 0.39 1.31 (0.54; 3.28) 0.26 0.40 1.30 (0.55; 3.33) 

Major and Disabled 1.51* 0.37 4.53 (2.25; 9.08) 1.50* 0.38 4.49 (2.26; 9.15) 

Vehicle Towed?             

No – – Reference – – Reference 

Yes 0.96* 0.41 2.61 (1.17; 5.83) 0.95* 0.42 2.58 (1.14; 5.83) 
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CU Driver Airbag Status             

Not Deployed – – Reference – – Reference 

Deployed 1.09** 0.25 2.99 (1.83; 4.87) 1.11** 0.25 3.04 (1.86; 4.97) 

Roadway Condition             

Dry – – Reference – – Reference 

Wet -0.98** 0.35 0.37 (0.19; 0.75) -1.04** 0.36 0.35 (0.18; 0.72) 

Intercept -8.68** 0.68 – -8.93** 0.71 – 

Number of Observations:  57,132 57,132 

LL at Convergence: -472.983 -506.042 

Wald χ2 (31) 336.700 367.980 

Prob> χ2 0.000 0.000 

AIC 1,009.97 1,076.08 

BIC 1,296.47 1,362.58 

Notes: 

** Significant at the 99% confidence interval 

* Significant at the 95% confidence interval 

 1 

Time Information 2 
The variables in this group describe the temporal distribution of the Interstate crashes in terms of 3 

month, day, and hour. The analysis of the crashes showed statistically significant differences in 4 

terms of the month of the year between the two types of crashes. WWD crashes were observed to 5 

be more frequent in the months of March, May, and November, accounting for nearly half of all 6 

WWD crashes. Crashes that happened in March, May, and November are 3.19, 3.47, and 3.56 7 

times more likely to be WWD, respectively. Even though the data analysis showed that WWD 8 

crashes were more likely during these three months, no specific reasons were found to explain 9 

this phenomenon. Further studies and more data are needed to determine whether the same trend 10 

persists over a longer time period. 11 

Four periods (categories) were considered for the time of day mainly because of the 12 

lighting condition. The hourly distribution also varied throughout the hours of the day, with the 13 

late-night and early-morning times comprising the highest frequency of WWD crashes. More 14 

specifically, evening and night periods account for about 80% of the total WWD crashes. The 15 

results showed that crashes happened during the evening are 2.85 times more likely to be a result 16 

of WWD maneuvers. For the nighttime condition, this number increases to 5.50, implying the 17 

role of lighting condition and time of day in the probability of WWD crashes. This result is in 18 

line with some other studies (3, 8, and 28). 19 

 20 

Responsible Driver 21 
According to the estimation results presented in Table 4, driver age is found to significantly 22 

differentiate between WWD and non-WWD crashes on Interstates in Alabama. While 23 

statistically significantly different from other types of crashes, drivers older than 65 years are 24 

overrepresented when it comes to WWD. Specifically, drivers older than 65 are 9.07 times more 25 

probable to get involved in a WWD crash. This finding which is consistent with the studies by 26 

Braam (4) and Lathrop (10), is perhaps related to the diminished visual ability by aging that 27 

cause difficulties for this age group to see the signage and pavement markings, specifically 28 

during nighttime condition when lighting may be inadequate. The findings of a study by Gibbons 29 

(29) could recognize a relationship between aging and nighttime driving behaviors signifying 30 
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that older drivers have more difficulty detecting objects than younger drivers when the roadway 1 

is not lit and suggesting an interaction between these two variables. 2 

The driver’s physical/mental condition also delineates between WWD crashes and the 3 

other types of crashes since nearly half of the WW drivers were DUI, whereas less than 4% of 4 

drivers in non-WWD crashes were intoxicated. Being statistically significant, DUI drivers and 5 

physically impaired drivers are 8.64 and 56.47 times, respectively, more likely to experience 6 

WWD crashes on Alabama Interstates. Previous studies have found extensive correlation 7 

between alcohol consumption and impaired driving that causes difficulties for drivers in 8 

perceiving roadway information (30 and 31).  9 

An interesting finding is that the majority of WW drivers had the crash within 25 miles of 10 

their residential location. From the corresponding OR presented in the Table 4, it can be inferred 11 

that drivers who had the crash at locations farther than 25 miles from their dwelling place are 12 

less probable (half of the other drivers) to get involved in WWD crashes, suggesting that 13 

distraction (due to factors like intoxication) might play a considerable role in these kinds of 14 

crashes. A detailed look at the data shows that nearly 60% of drivers with a residency place of 15 

less than 25 miles from their crash location were DUI while this number for drivers with the 16 

WWD crash happened farther than 25 miles from their residency location drops to 40%. These 17 

statistics may explain why close-to-home drivers are more likely to get involved in WWD crash. 18 

 19 

Vehicle Information 20 
When comparing WWD with non-WWD crashes, vehicle age was found to be a statistically 21 

significant factor. As shown in Table 3, WWD vehicles tend to be older compared to non-WWD 22 

vehicles. This difference is reflected in the results so that vehicles older than 15 years are more 23 

likely to be the causal unit of the WWD crash (2.15 times). Major and disabling damage to 24 

WWD vehicles is disproportionally high, with an OR of 4.53. This could be linked to the fact 25 

that the majority of WWD crashes are head-on or opposite-direction sideswipe crashes with 26 

more severe damage to the vehicles than other Interstate crash types, resulting in more vehicles 27 

being towed after WWD crashes (OR=2.61). Airbag deployment is also almost three times more 28 

probable (OR=2.99) in WWD crashes than in other types of crashes mainly due to the severe 29 

nature of the WWD crashes as well as frontal impact that typically occurs. 30 

 31 

Environmental Condition 32 
This group identifies the other environmental conditions for Interstate crashes. Based on the 33 

results, the type of setting (urban vs. rural) did not enter the final model to make a significant 34 

difference among different types of crashes on Interstates in Alabama, although this factor was 35 

found to be important by Zhou et al. (8). Roadway conditions were also found to characterize 36 

WWD crashes so that these kinds of crashes are more prevalent when the roadway surface is dry. 37 

 38 

CONCLUSIONS AND RECOMMENDATIONS 39 
This research aimed to identify and verify the true WWD crashes using five years of Alabama 40 

crash data (2009-2013). These verified WWD crashes were then combined with other non-WWD 41 

crashes within the same time period on Alabama Interstates to characterize WWD crashes. Given 42 

the rareness of the WWD events (around 0.16% of total Interstate crashes in our dataset), the 43 

Firth’s penalized-likelihood logistic regression model was suggested. Using this method, the 44 

effect of all the confounding variables was examined and the corresponding OR to indicate the 45 

relative effect of the significant variables was calculated. The summary results of this model 46 
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(Table 4) clearly indicate a variety of factors that can characterize and affect the probability of 1 

WWD crashes on Interstates. The estimates of the binary model was also provided. Two 2 

information criteria (AIC and BIC) were calculated for both models. The comparison between 3 

these two values shows that given our dataset, the Firth’s model outperforms the binary model. 4 

Lower standard error of parameter estimates for Firth’s model also implies more accurate 5 

estimations. 6 

According to results from the fitted model, drivers who cause WWD crashes are more 7 

likely to be 65 and older (OR=9.07), to be physically impaired (OR=56.47), to be under the 8 

influence of alcohol and drugs (OR=8.64), to drive during the evening (OR=2.85) or night 9 

(OR=5.50) when there will probably not be ample lighting, to reside in the vicinity of the crash 10 

scene (OR=Reference), and to drive vehicles older than 15 years (OR=2.15). Moreover, WWD 11 

crashes can be characterized by airbag deployment (OR=2.99), causing major and disabling 12 

damage to the primary vehicle (OR=4.53), being towed after the crash (OR=2.61), happening in 13 

March (OR=3.19), May (OR=3.47), and November (OR=3.56), and occurrence on dry roadways 14 

(OR=Reference).  15 

Based on the empirical findings of the present study and, specifically, obtained ORs, 16 

several countermeasures and recommendations can be suggested to help mitigate the WWD issue 17 

on Alabama Interstate. These countermeasures can be grouped into three categories of education, 18 

engineering, and enforcement. Educational programs and behavior-based countermeasures 19 

should specially target older and DUI drivers given that these two driver groups were 20 

significantly overrepresented with higher ORs. Considering that drunk driving occurs most often 21 

during evening and night, it was expected that these two variables would both be significant. As 22 

for the driver age, the issue might be related to the diminished eyesight and contrast sensitivity of 23 

older drivers due to the aging process. Moreover, as drivers grow older, some other abilities such 24 

as attention and perceptual processes decrease and the possibility of experiencing impairment 25 

while driving increases (32), which in turn intensifies the possibility of WWD movements. One 26 

key point in educating older drivers is that this age group does not need more information about 27 

traffic rules, rather, they need to understand if they are able to safely drive (33). This has been 28 

the motivation for some states to provide a self-assessment tool for senior drivers and help them 29 

learn about their abilities to drive. Concerning the increasing percentage of older population in 30 

Alabama, this age group should be given special attention.  31 

The finding also substantiates the significant role of DUI driving and necessitates the 32 

establishment of relevant prevention campaigns and the promotion of stricter rules. In 2014, 33 

Alabama joined other 20 states in the U.S. to legislate the use of ignition interlock devices (IIDs) 34 

for the first-time convicted drunk drivers. Having the 2014 WWD data can help evaluate the 35 

effectiveness of this newly acted law on the number of WWD crashes caused by intoxicated 36 

drivers. Studies have shown promising results with the use of IIDs in reducing the recidivism 37 

rate among alcohol impaired drivers (34−36). The present study identified the statically 38 

significantly increased probability of WWD crashes during evening (2.85 times) and night (5.50). 39 

Other than the prevalence of DUI drivers during these hours, the problem with lighting (37) as 40 

well as possible drowsiness and fatigue can worsen the situation.  41 

Driver residency distance was found a contributing factor. The inclusion of this factor in 42 

the final model, meaning that WW drivers are more likely to be close-to-home drivers, suggests 43 

the role of distraction, whether as a result of intoxication or of aging, in the probability of WWD. 44 

Vehicle age was also the factor that was significant in the Firth’s model. The importance of this 45 

parameter in the final model can define the economic status of the families based on social 46 
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processes, such as education. A study by Mohammadian and Miller (38) demonstrated that 1 

people with higher level of education are more likely to purchase new vehicles, which reflects 2 

their higher salaries compared to people with less formal education. Finally, WWD crashes could 3 

be distinguished by the roadway condition, the extent of damage to the vehicle, and the airbag 4 

deployment. The latter is related to the type of crash, which is severe and more likely to cause 5 

deployment of airbags. 6 

Similar to most studies, this study also has some limitations. For example, the data used 7 

in this study is just from one U.S. state. Incorporating more data from other states not only 8 

bolsters the sample but also can lead to a more comprehensive result and help in developing 9 

nationwide countermeasures and strategies. Another limitation of this study comes from the 10 

inevitable role of human error in data collection process by police officers that affects the level 11 

of detail and accuracy for the obtained significant variables. 12 
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