The insider: A planners’ perspective on accessibility

Geneviève Boisjoly
PhD student
School of Urban Planning McGill University
Suite 400, 815 Sherbrooke St. W. Montréal, Québec, H3A 2K6
Tel.: 514-398-4075; Fax: 514-398-8376
E-mail: genevieve.boisjoly@mail.mcgill.ca

Ahmed M. El-Geneidy
Associate Professor
School of Urban Planning McGill University
Suite 400, 815 Sherbrooke St. W. Montréal, Québec, H3A 2K6
Tel.: 514-398-4075; Fax: 514-398-8376
E-mail: ahmed.elgeneidy@mcgill.ca

Word Count: 5033 + 10 figures (2500) = 7533 words

Paper accepted for presentation at the Transportation Research Board Annual Meeting

ABSTRACT

Accessibility, the ease of reaching destinations, is a key land use and transportation performance measure that has been studied for decades by researchers. Nevertheless, its implementation in policy and practice is generally limited. The goal of this study is to identify the factors that foster and prevent the use of accessibility metrics by practitioners. In order to achieve this objective, a survey on the use of accessibility metrics was conducted among 343 practitioners around the world. Findings from the survey show a gap between knowledge of the concept of accessibility and its implementation in policy and practice. While 90% of the respondents are familiar with the concept, only 55% stated that they use accessibility metrics in their work. Whereas lack of support and interest does not appear to be a major obstacle to implementing accessibility metrics, lack of knowledge and data are highlighted as the main barriers to implementation in practice. These results suggest that further training is required to support the use of metrics by planners and policy-makers. Furthermore, including clear accessibility indicators in planning documents is key to promoting the use of metrics in policy and practice, as it was stated as a main reason motivating the generation of accessibility metrics. This research highlights potential avenues to support the integration of accessibility metrics in policy and practice and is of relevance to researchers, planners and policy-makers wishing to foster accessibility-based planning approaches.

Key words: Accessibility metrics, Accessibility planning, Sustainable mobility, Access to destinations, Land use and transportation planning
INTRODUCTION

Accessibility, the ease of reaching destinations, is a key land use and transportation performance measure (1). It has been extensively researched with the ultimate purpose of informing decision-making and influencing land use and transportation planning. Yet, little is known on the implementation of accessibility metrics in transportation practice. In fact, although transportation issues are increasingly framed in terms of access to opportunities (2-6), accessibility is still largely marginalized in practice (7-9).

The aim of this study is to understand the factors that foster and prevent the use of accessibility metrics by land use and transportation practitioners. In order to achieve this objective, a survey on the use of accessibility metrics was conducted among transportation planners around the world. This study assesses the familiarity and use of the concept and metrics, and the motivations and barriers to using accessibility metrics in policy and practice. This study is of relevance to researchers, planners and policy-makers wishing to foster accessibility-based planning approaches.

LITERATURE REVIEW

Accessibility, defined as the ease of reaching destinations (6), is one of the most comprehensive performance measures of land use and transportation systems (10). As such, accessibility reflects the multiple benefits provided by land use and transportation systems (11). For example, greater accessibility is associated with higher land values (10, 12, 13) and employment rates (14-19), as it provides residents with greater access to a variety of opportunities. Increased accessibility also reduces the risks of social exclusion (4, 6) and improves the quality of life of individuals (1). Furthermore, accessibility by transit is associated with greater transit use (20, 21), and can thus help in reducing car use and the resulting greenhouse gas emissions (22, 23). As accessibility captures multiple dimensions, it is increasingly put forward as a key element of a transportation planning (23-25).

Multiple accessibility indicators have been developed to capture the benefits of land use and transportation systems (26-28), ranging from individual accessibility metrics to location-based accessibility metrics (29). Location-based metrics are most commonly used in planning as they provide a comprehensive measure of regional accessibility. These metrics indicate the ease of accessing destinations from a specific location and accounts for the spatial distribution of opportunities (for example, jobs or healthcare services) and the ability to move from one place to another (26). The transport component, the ability to move from one place to the other, is generally mode specific and based on travel time or distance (26, 30-33). A common location-based metric is a measure of cumulative-opportunities, which counts all opportunities that can be reached within a travel costs threshold. For example, the number of jobs that are within 45 minutes of travel times by transit from a specific place is used to assess the access to jobs by public transit. Another common metric is the gravity-based measure, which discounts opportunities based on a distance-decay function. Accordingly, opportunities that are located farther (by distance or time) receive less weight than closer opportunities. While this measure is more reflective of travel behavior, cumulative-opportunities are simpler to generate, interpret and communicate.

Although accessibility has been extensively researched, its inclusion in transportation planning is limited; the mobility-based approach, which largely focuses on traffic fluidity and travel speeds, still dominates transportation planning (7-9). Through a detailed assessment of four transportation plans in California, Handy (34) found that although accessibility emerged as a concern in most plans, these plans were still dominated by a mobility-oriented paradigm. Similarly,
in an assessment of 42 American transportation plans, Proffitt, Bartholomew, Ewing and Miller (7) found that less than a quarter of the plans measured success based on accessibility indicators. In the United Kingdom (UK), the national government has established a framework for accessibility planning. However, the broad and flexible guidelines resulted in a “misused” and “abused in practice” of accessibility (8). Research has also shown that there is a lack of consensus on the accessibility indicators to be used in transportation evaluations (8, 35). While many studies have focused on accessibility metrics and indicators, no study, to our knowledge, has looked into the use of accessibility metrics by practitioners. Yet, understanding how and to what extent accessibility indicators are used in practice is essential to bridge the gap between planning and research, and to foster the implementation of accessibility-oriented planning approaches.

DATA AND METHODOLOGY
To better understand the factors influencing the implementation of accessibility metrics, a survey was conducted among land use and transportation practitioners. The survey was conducted online, and disseminated through various mailing lists and social media groups of planners. The main goal was to identify planners that use accessibility in their work and determine the motivations and barriers behind implementing accessibility metrics.

The selection and subdivision of respondents included in this study are presented in FIGURE 1. In total, 440 fully completed surveys were collected. As the objective was to focus on transportation planning practice, academics and architects were excluded from the original sample. Furthermore, all respondents were asked about their familiarity and use of the concept and metrics (see detailed questions in FIGURE 1, right). Respondents that were neither familiar with the concept nor the metrics were removed (15 respondents). In total, 343 nonacademic respondents were included in the final sample, of which 274 were from North America, 45 from Europe, and 24 from other regions. These respondents were then divided in three subsamples, based on whether they used the concept and metrics of accessibility in their work. The three subsamples are as follows:

A. Respondents that used accessibility metrics in their work (Metrics; N=247).
B. Respondents that did not use accessibility metrics in their work, but that did use the concept of accessibility (Concept; N=68).
C. Respondents that did not use the concept of accessibility, nor the metrics, in their work (Others; N=28).

The survey included general questions about the respondents’ work context and their perception of decision-making based on accessibility metrics. Furthermore, the first subsample (respondents that used metrics) was asked specific questions about the design and implementation of metrics, whereas the second subsample (respondents using the concept, but not the metrics) was asked specific questions about their use of the concept, and reasons for not using metrics. Throughout the survey, agreement questions used a 5-point Likert scale (1—“strongly disagree”, 2—“disagree”, 3—“neither agree nor disagree”, 4—“agree”, 5—“strongly agree”). In the analysis of the results, respondents that selected “agree” and “strongly agree” were aggregated together as “agree”, and respondents that selected “disagree” and “strongly disagree” were aggregated together as “disagree”. Respondents who selected “neither agree nor disagree” were considered as “neutral”.
FIGURE 1 Description of the Sample

The characteristics of the 343 respondents included in our sample are presented in FIGURE 2. Most respondents worked in the public sector (73%), and the majority were planners (62%). Respondents were mainly working within a governmental organization, a planning organization, or a consulting agency, while very few worked for a public transport providers. Furthermore, the majority of respondents were involved with transportation projects (public transit, walking, cycling, driving, parking or land use) at the local or regional scale.

Note: In this figure, Agree includes "neither agree nor disagree", "agree", and "strongly agree" whereas Disagree includes "strongly disagree", and "disagree".
RESULTS From Knowledge to Implementation

All respondents were asked about whether they were familiar with the accessibility concept and metrics, and whether they used them in their work. The patterns are similar across sectors of employment, positions, and organizations, and thus presented in an aggregated manner in FIGURE 3. FIGURE 3 illustrates the proportion of respondents that agreed with each of the statements. In all cases, more than 50% of the respondents agreed with the statement, suggesting that the majority of respondents are familiar with the concept and metrics, and use them in their work. This high penetration rate is partially explained by the non-random selection of participants. In fact, there was an effort to disseminate the survey to practitioners who do work with accessibility, as the aim was to understand how accessibility is designed and implemented. Furthermore, practitioners with a prior knowledge of accessibility were more likely to fill out the survey.

Nevertheless, the comparative assessment of the familiarity and use of the concept and metrics sheds light on current practices. Interestingly, 90% of the respondents are familiar with the concept of accessibility and 86% of the respondents use the concept of accessibility in their work. This indicates that almost all the respondents that are familiar with the concept use it in their work. Not surprisingly, a slightly lower proportion of respondents (78%) are familiar with the metrics. Yet, only 55% of these respondents use them in their work. There is an important discrepancy between the number of respondents that are familiar with the metrics and the ones who use it. These findings suggest that although practitioners are familiar with the metrics, some factors prevent them from implementing them in their workplace. These factors are further explored in the next section.
Motivations and Barriers

To better understand the factors underlying the use of the accessibility concept and metrics, respondents were asked about the reasons for which they generated accessibility metrics. For those who did not use accessibility metrics in their work, we asked them about the barriers preventing it. FIGURE 4 shows the motivation for using accessibility metrics (among respondents who use the metrics) and the barriers to using them (among respondents who used the concept, but not the metrics).

Only 22% of the respondents that used accessibility metrics in their work stated that the metrics were present as a tool prior to their arrival. Similarly, few respondents (16%) stated that it was a request from their superior. These results suggest that, although most practitioners are familiar with the concept and metrics, accessibility is not widely implemented as a planning tool in our sample. In contrast, the main motivation for using the metrics comes from the respondent’s initiative: 36% of the respondents stated that the generation of accessibility metrics was their own initiative. This indicates that promoting accessibility among practitioners can be an efficient way to foster the implementation of accessibility metrics as a planning tool. Furthermore, 30% of the respondents indicated that the generation of metrics resulted from a requirement from a planning document. Accordingly, integrating accessibility indicators in planning documents can help practitioners in implementing accessibility metrics in their work. Finally, a request from a client is the least important motivation. This could be due to the low representativeness of respondents from the private sector in our sample.

Interestingly, the barrier most frequently stated by respondents who did not use accessibility metrics in their work is the lack of knowledge (52%). These findings highlight the need to educate future and current practitioners about accessibility metrics, especially since the survey revealed that most metrics were generated as a result of the respondents’ own initiative. Furthermore, another important barrier is the lack of data to generate accessibility metrics (34%). Yet, many accessibility metrics can be generated through open-source data, for example using General Transit Feed Specification data, and open Geographic Information System (GIS) such as QGIS. With respect to the location of jobs or other opportunities, these can be obtained from various sources. Accordingly, the lack of data could also be addressed by educating practitioners about how to collect adequate data to generate accessibility metrics, and about the different data sources and tools that are available in different regions. Finally, it is also interesting to note that
the lack of interest (7%) and lack of support (10%) are the least commonly stated barriers to implementing accessibility metrics. Practitioners hence do not appear to be reluctant to implementing accessibility-based approaches. Rather, knowledge factors prevent them from generating accessibility metrics.

FIGURE 4 Motivations and Barriers to the Use of Accessibility Metrics

FIGURE 5 presents the motivations for using accessibility metrics, by sector of employment. Not surprisingly, the proportion of respondents who stated that the generation of accessibility metrics was their own initiative is greater for respondents from the private sector, whereas a requirement from a planning document is most frequently cited by respondents from the public sector. The generation of accessibility metrics due to a requirement from a planning document is in fact the most commonly cited reason in the public sector (47% of the respondents), highlighting the potential influence of planning documents on practitioners from the public sector. With respect to the private sector, a request from a client is the second most commonly cited motivation (33% of the respondents). As transportation planning clients are often public entities such as municipalities or regional governments, planning documents can also play an important role here. Indeed, having clear accessibility objectives and indicators can support the integration of accessibility metrics in outsourcing contracts.

Taken together, the findings suggest that practitioners are open to using accessibility as a tool, but that the lack of knowledge prevents some of them from doing so. Accordingly, more effort is needed to train current and future practitioners about the generation of accessibility metrics. Furthermore, introducing accessibility indicators in planning documents can effectively support the dissemination of accessibility metrics in the public and private sectors.
FIGURE 5 Motivations to the Use of Accessibility Metrics, by Sector of Employment

Accessibility in Planning Documents

With respect to planning documents, respondents were asked about the presence of accessibility in the planning documents that they work with. The following questions were asked:

To what extent do you agree with the following statements?

- The concept of accessibility is included in the planning documents of the region I work in.
- Accessibility is stated as a main goal in the planning documents of the region I work in.
- Clearly defined accessibility indicators are included in the planning documents of the region I work in.

Around 74% of the respondents stated that the concept of accessibility is included in the planning documents of their region, whereas 59% indicated that accessibility was stated as a goal (FIGURE 6). Furthermore, only 38% of them agreed that clearly defined accessibility indicators were present in the planning documents. These findings are in line with previous studies that found that although accessibility is included in most planning documents, few of them have clear accessibility goals and indicators that guide the decision-making processes (7, 34). Yet, the presence of accessibility requirements in planning documents foster the use of accessibility metrics by practitioners. Accordingly, it is essential to establish clear accessibility guidelines in regional and metropolitan transportation plans.
FIGURE 6 Presence of Accessibility in Planning Documents

The presence of accessibility in planning document is further explored by comparing the results between respondents that used accessibility metrics, respondents that used the concept but not metrics, and respondents that did not use accessibility in their work. Note that, for the purpose of this analysis, respondents who selected “neither agree nor disagree” with respect to the use of the concept or metrics were not considered as respondents that did use the concept or metrics, respectively.

FIGURE 7 illustrates the proportion of respondents that agreed with each statement, for each group. Respondents that do not use accessibility in their work agreed in the lowest proportion that the concept of accessibility is included in the planning documents they work with, and that accessibility is stated as a goal. These results suggest that the presence of accessibility, and its statement as a goal, are associated with a greater use of accessibility (both in terms of the concept and metrics). Note that a statistical difference test (Tukey HSD) was performed to compare the average Likert scale values (from 1 to 5) between groups. Statistical differences (at the 90% confidence level) were observed between respondents that do not use accessibility, and the ones that do (metrics or concept), further supporting the results discussed above.

With respect to indicators, the proportion of respondents that agreed that clear accessibility indicators were included in the planning documents is much higher among respondents who used accessibility metrics in their work. In this case, statistical differences in the average Likert scale values were found between respondents that used metrics and the two other groups. These results support the finding that the presence of clear accessibility indicators in planning documents foster the implementation of accessibility metrics by practitioners. This is once again not a surprising result, but highlights the strong importance of having clearly defined indicators in planning documents. Whereas as goals are associated with respondents that use accessibility in general, clear indicators are more strongly linked to the use of metrics.
In terms of accessibility indicators, the survey investigated what types of metrics are used by practitioners. As we can see in FIGURE 8 and FIGURE 9, public transit is dominant, both in terms of modes assessed and types of destinations (access to public transportation stops). Access to public transit is a measure of service coverage that is widely used by public transit providers and in metropolitan transportation plans (36-38). Yet, such measure is only one component of accessibility, as it does not include the location of opportunities. For example, an individual can have good access to a public transit stop, but the bus line serving this stop might not lead to a high number of opportunities. To effectively capture the ease of reaching opportunities, access to destinations must be considered. In this regard, access to jobs and employment clusters, although not as commonly used as access to public transit, is used by a vast majority of respondents (72% and 60% respectively), while access to other types of destinations (green amenities, retail stores, healthcare services, and cultural and leisure activities) is used in a lower proportion (between 40% and 50%).

In terms of modes, access by public transit is used by the greatest number of respondents. Since the availability of GTFS data, accessibility by transit has become a major trend of accessibility research (20, 39). Whereas cycling and walking accessibility is not as commonly assessed by practitioners, van Wee (35) recently emphasized the need for accessibility research focusing on active transportation modes. Although there seems to be emerging research on this topic (40, 41), the gaps in research likely explains the low penetration of active mode accessibility indicators.

![FIGURE 7 Presence of Accessibility in Planning Documents, by Use of Accessibility](image-url)
Respondents were also asked to select the types of metrics that they used in their work. As we can see in FIGURE 9, the most commonly used metrics are travel time proxies. In line with these findings, a recent study found that travel time proxies are also widely used in metropolitan transportation plans across the United States (7). While reduced travel times often reflect greater accessibility in the short term, they can also result in greater travel distances and costs in the long run (42). If gains in travel times are due to road expansions and increased travel speeds, the interventions are likely to yield greater dispersion of destinations, as a result of induced demand and land use development (43, 44). Such mobility-oriented development typically leads to greater travel costs, increased driving, and greater discrepancies in accessibility. Accordingly, independent mobility goals might not fully address the broader societal goal of transportation of providing access to destinations within reasonable time and costs (24, 42, 44). While the focus on mobility has favoured urban sprawl in the last decades, a focus on accessibility is more likely to provide all individuals with more options, and to reduce the need to drive (44).

In this regard, measures of access to destinations, such as cumulative-opportunity or gravity-based metrics, must be used in addition to travel time proxies to capture the potential access to destinations. Yet, out of the 129 practitioners that used travel time as a proxy, 43 respondents did not use access to destinations metrics as a complementary indicator (cumulative-opportunity or gravity-based). The single use of travel time proxies can result in a bias towards mobility-based approaches, rather than ensuring a reasonable access to destinations for all (24).

Density and land use mix proxies are also commonly used by practitioners as shown in FIGURE 9. Increasing density and mix of use has the potential to increase access to destinations, and is thus a relevant metric to address planning for accessibility (42). Yet, it does not account for the transport component.

Cumulative-opportunity and gravity-based metrics directly reflect the ease of reaching destinations and account for the land use and the transport component. Cumulative-opportunity
metrics are used in greater proportion by practitioners, as can be seen in FIGURE 9. While gravity-based metrics more closely reflect travelers’ perceptions of time (11), they are more difficult to generate and to communicate. In contrast, cumulative-opportunity measures are easier to generate and to interpret (26), and thus most commonly used in planning. Cumulative-opportunity metrics are highly correlated with gravity-based metrics, and thus represent appropriate measures of regional accessibility (10, 45).

The results indicate that accessibility metrics used by practitioners are generally based on travel time or distance. These thresholds are also largely used in accessibility research, while a few studies have incorporated generalized costs (46-48). Although generalized costs better represent the time and monetary values associated with a trip, metrics based on time generally adequately reflect accessibility, as they are highly correlated with mode choice (49, 50).

FIGURE 9 Types of Accessibility Metrics Used by Practitioners

In sum, among the 189 practitioners who agreed (“agree” or “strongly agree”) that they use accessibility metrics in their work, 22% (42 respondents) of them did not use indicators that reflect access to destinations. 40 respondents merely used proxies (travel time, density, land use mix) and 2 respondents only used access to transit metrics. Overall, 43% of all respondents (n=343) use metrics reflecting access to destinations, while 55% stated that they use accessibility metrics in their work (FIGURE 3). Taken together, these findings reiterate the importance of training current and future practitioners about accessibility metrics and having clearly defined accessibility indicators in planning documents. More specifically, a clear distinction should be made between mobility and accessibility, and access to destinations should be emphasized. This is, however, often lacking in planning documents, as found by Handy (34).
Another important component of accessibility metrics is their potential to influence decision-making. In this regard, respondents were asked about the relevance of accessibility metrics to planning and decision-making. Results are presented in FIGURE 10. As in the previous analysis, respondents who selected “neither agree nor disagree” with respect to the use of the concept or metrics were not considered as respondents that did use the concept or metrics, respectively.

As we can see in FIGURE 10, more than 95% of the respondents who do use accessibility metrics agreed that accessibility metrics can and should influence decision-making, and that accessibility metrics are useful planning tools. The proportion of respondents that agreed that accessibility metrics can and should influence decision-making is lower, however, among respondents who do not use accessibility metrics, especially those who do not use the concept nor the metrics. Although not surprising, this finding could suggest that as more practitioners use accessibility-based approaches, a greater proportion will perceive accessibility metrics as a potential planning tool to inform decision-making. It could also reflect that practitioners who perceive accessibility as useful for decision-making are more inclined to using accessibility metrics.

For all three statements, statistical differences were observed in the average Likert scale values between respondents that use accessibility metrics and the two other groups, whereas the difference between the respondents that use the concept (not the metrics), and respondents that do not use accessibility were not statistically different.

Respondents who did use accessibility in their work were also asked for what purpose they used the concept or the metrics of accessibility. Interestingly, in both cases, the main purpose was for decision-making (59% for the concept and 47% for the metrics). These findings are coherent with the results discussed above. Clearly, there is an agreement among most practitioners that accessibility is an important component of decision-making.
CONCLUSION

This study investigated the design and implementation of accessibility metrics by land use and transportation practitioners. It has shown that there is an important gap between the knowledge of the concept of accessibility, and its implementation into accessibility metrics. While most practitioners surveyed are familiar with the concept of accessibility, a much lower proportion of respondents (55%) stated that they use accessibility metrics in their work. Furthermore, only 43% of the respondents used accessibility metrics that actually reflect the ease of reaching destinations.

Whereas lack of support and interest does not appear to be a major obstacle to implementing accessibility metrics, lack of knowledge and data are highlighted as the main barriers. Accordingly, educating current and future practitioners on the generation of accessibility metrics and data collection methods is essential, especially since the generation of metrics is mainly initiated by the practitioners themselves in most cases. The study also reveals that the types of metrics most commonly used by practitioners, access to public transit and travel time proxies, do not reflect the ease of reaching destinations. These results further highlight the need to educate practitioners, especially with respect to the distinction between the different types of metrics. Furthermore, including clear accessibility indicators could help promote the use of accessibility metrics by practitioners. Planning document requirements are key motivations stated by practitioners using accessibility metrics. Yet, most respondents, especially the ones that do not use accessibility metrics, indicated that the planning documents of the region they work in do not include clear accessibility indicators. Finally, the findings suggest that accessibility is used largely for decision-making purposes, and that practitioners perceive accessibility as a relevant planning tool that should guide decision-making processes. This is especially the case for respondents who did use accessibility metrics in their work. A greater use of metrics by practitioners could thus increase the perception that decision-making and policies should be informed by accessibility metrics.

Educating practitioners and setting clear accessibility performance measures in planning documents can support the implementation of accessibility metrics in policy and practice, which can foster a shift from a mobility-based approach to an accessibility-based approach. National and regional governments and organizations can play a key role in setting clear accessibility requirements for transportation planning processes and planning documents. For example, the UK has established a framework for accessibility planning to ensure that local transportation planning authorities address issues of access to opportunities. As a result, accessibility is included in transport plans at the local level. Yet, as discussed in the introduction, the flexibility of the guidelines results in a multitude of interpretations that do not necessarily translate into access-to-destinations indicators (8, 51). Similarly, the United States has federal transportation planning requirements, one of which emphasizes the need to improve mobility and accessibility. As a result, most regional transportation plans address accessibility in one way or another. However, accessibility goals are rarely translated into accessibility indicators, and accessibility and mobility are often used interchangeably (7, 34). In sum, national policy documents can influence local transportation planning processes, but in order to ensure that accessibility indicators reflecting the ease of reaching destinations are included, clear guidelines must be provided and a clear distinction between mobility and accessibility must be made. Doing so can also contribute to educating practitioners on accessibility indicators.

There are some limitations to this study. Firstly, the sample is largely composed of practitioners from North America, and to a lesser extent, Europe. Further research could include a greater number of respondents from a variety of countries. Doing so would allow comparative
analyses between different countries and regions and could help investigate the influence of national and regional regulatory frameworks on practitioners. Secondly, this research focused on location-based accessibility metrics, as they provide a regional assessment of accessibility and are accordingly most commonly used in planning. Yet, further studies could look into personal accessibility metrics.

Nevertheless, this study provides a first insight into general and potential measures that can help practitioners in developing accessibility metrics. Overall, this research illustrates the need to bridge the gap between accessibility research and practice. The findings are of relevance to planners and policy makers wishing to support accessibility-oriented planning practices and are helpful for researchers to better understand the challenges experienced by practitioners.
ACKNOWLEDGEMENTS

The authors want to thank Adie Tomer from Brookings Institution, Enrica Papa from the University of Westminster, and Dea van Lierop from McGill University for providing feedback on the survey. Thanks also to all researchers and practitioners who filled out the survey. This research is funded by the Brookings Institution, the Social Sciences and Humanities Research Council and the Natural Sciences and Engineering Research Council.

REFERENCES

