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ABSTRACT1
This paper systematically reviews studies that forecast short-term traffic conditions using spatial2
dependence between links. We synthesize 130 extracted research papers from two perspectives: (1)3
methodological framework, and (2) approach for capturing and incorporating spatial information.4
From the methodology side, spatial information boosts the accuracy of prediction, particularly in5
congested traffic regimes and for longer horizons. There is a broad and longstanding agreement6
that non-parametric methods outperform the naive statistical methods such as historical average,7
real time profile, and exponential smoothing. However, to make a conclusion regarding the perfor-8
mance of neural network methods against STARIMA family models, more research is needed in9
this field. From the spatial dependency detection side, we believe that a large gulf exists between10
the realistic spatial dependence of traffic links on a real network and the studied networks. This11
systematic review highlights that the field is approaching its maturity, while it is still as crude as12
it is perplexing. It is perplexing in the conceptual methodology, and it is crude in the capture of13
spatial information.14

Keywords: Traffic Forecasting; Spatial Correlation; Systematic Review; Traffic Network;15
Life-cycle16
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INTRODUCTION1
Short-term traffic forecasting aims to predict the number of vehicles on a link during a given2
time slice, typically less than an hour. With the growing need to develop more adaptive traffic3
management systems, short-term traffic forecasting has aroused the interest of traffic engineers.4
This is a fundamental objective of advanced traffic management systems and advanced traveler5
information systems. Approaches generally take advantage of the information that many of the6
cars that will be on one link soon are already on the network upstream of the relevant location, and7
of typical patterns of flow.8

Does spatial interdependence exist between traffic links? Is embedding this dependency in9
short-term traffic forecasting methods propitious? If so, how is this information captured? These10
questions have been confronting researchers who seek to maximize the performance of the network11
by anticipating traffic conditions. Two strands of research tackled these questions in two discrete12
time spans. One benefits from the information of upstream and downstream traffic links as an13
input of the system. The other predefines the spatial dependence structure between traffic links,14
and embeds this structure in forecasting methods. Irrespective of which strand is chosen, the15
success of the method heavily relies on detecting the spatial dependence structure.16

Embedding the spatial components in traffic forecasting methods has been the focus of17
countless research papers over the past few years. The related literature has compelling evidence18
to support the potential of spatial components to augment traffic forecasting. Nevertheless, cou-19
pling the spatial components with forecasting methods may act as either a catalyst or a hindrance.20
It behaves as a catalyst when actual spatial information feeds the system, and behaves as a hin-21
drance when misrepresented spatial information causes erroneous results. Ample of methods have22
emerged aiming to extract spatial dependency between traffic links as accurately as possible. How-23
ever, little is known about whether and to what extent the emerged methods represent the spatial24
interdependence realistically.25

This paper reviews studies that fall into the aforementioned two strands of research. Partic-26
ularly, we delve into the existing research through the lens of a comprehensive systematic frame-27
work. This approach comprehensively searches the literature, rather than just one part of it, and28
thereby lowers the chance of bias. Drilling down further, we seek to answer the following questions29
in this review:30

• What are spatial components and their role in traffic forecasting?31

• To what extent does spatial dependency exist between traffic links?32

• How is spatial dependence captured and embedded in forecasting methods?33

• Is the current knowledge exhaustive or crude?34

• What are the lacuna in the current literature?35

• What are directions should research take?36

Answering these questions enables us to disclose what and how much we know about37
the effectiveness of spatial information in traffic forecasting methods. It also sheds light on the38
consistencies and inconsistencies of the findings across multiple studies, and leads to identifying39
gaps in our knowledge that require further research.40
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Having this introduction, the remainder of the paper is set out as follows. First, we discuss1
the methodology of the review that we adopted for the sake of literature synthesis. Second, we sum-2
marize the statistics of 130 research papers extracted from the pool of studies with our systematic3
approach. Third, we review and synthesize the extracted research papers from two perspectives:4
(1) methodological framework of the models and (2) approach for capturing and incorporating5
spatial information in the models. Fourth, we conclude the paper with a broad discussion on the6
lacuna of the current literature, and propose future directions.7

REVIEW METHODOLOGY: A SYSTEMATIC APPROACH8
There is a general agreement on reviewing the literature “systematically” to avoid representing9
islands without continents. Despite the emphasis on systematic literature review, researchers adopt10
the following recipe sporadically (1).11

“Take a simmering topic, extract the juice of an argument, add the essence of one filing12
cabinet, sprinkle liberally with your own publications and sift out the work of noted detractors or13
adversaries.”14

To avoid this pitfall, we follow five steps in conducting a systematic review proposed by15
Khan et al. (2):16

• Step 1: Framing questions for a review17

• Step 2: Identifying relevant work18

• Step 3: Assessing the quality of studies19

• Step 4: Summarizing the evidence20

• Step 5: Interpreting the findings21

To capture the potential range of published articles in the field, we identified relevant arti-22
cles by an electronic search of Google Scholar, IEEE Xplore, and Scopus academic search engines23
along with electronic library records. The limited coverage time of electronic sources does not24
cause any bias in our case, as we trace back utilization of spatial information in traffic forecasting25
methods to 1984. We hunted for studies while considering manifold and distinct search keys not26
just simply in titles, keywords, and abstracts, but in the text of articles. Although this necessitated27
double effort, it resulted in extracting a more comprehensive pool of research. The main search28
keys were “traffic forecast,” “forecasting traffic,” “forecasting of traffic,” “spatial,” and “space.”29
We searched for both “spatial” and “space” terms, as they are interchangeably used to describe30
spatial components in the literature of traffic forecasting.31

We summarized the study exclusion process in Figure 1. This process encompasses three32
steps. In the first step, we searched the literature to extract all articles including the combination33
of selected keywords as shown in Figure 1. This search assuredly led to extracting articles from34
diverse disciplines. In the second step, we executed four distinct assessment criteria to not only35
exclude irrelevant disciplines, but to only include articles that are germane to using spatial com-36
ponents for traffic forecasting. Thus, we excluded literature about wireless local area networks,37
internet traffic, railways, and groundwater, to name but a few. We also dropped articles where our38
search keys appeared in the introduction, literature review, recommendation, and reference sec-39
tions. Concretely speaking, we perused the pool of articles closely and excluded articles which40
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lack implementation of spatial information in traffic forecasting methods. This resulted in 1131
English research articles. In the third step, we systematically reviewed the lists of references from2
excluded articles. We then added those research papers that met the inclusion criteria in accordance3
with the second step. The consequence of this systematic search resulted in 130 publications in4
peer-reviewed journals, conference proceedings, and dissertations. A strong point of emphasis is5
that the literature includes mounting articles in employing spatial components on traffic forecast-6
ing methods in different languages. Nonetheless, we have limited the scope of this review to only7
English literature.8

REVIEW STATISTICS9
In this section, we provide a statistical overview of extracted articles. Table 1 classifies the source10
of the articles that embedded spatial components in traffic forecasting methods. As depicted11
in Table 1, 63.8% of articles were published in peer-reviewed journals. Almost 67.5% of the12
extracted articles appeared in Transportation Research Part C, Transportation Research Record,13
IEEE Transactions on Intelligent Transportation Systems, Journal of Transportation Engineering,14
Computer-Aided Civil and Infrastructure Engineering, IET Intelligent Transport Systems, Journal15
of Intelligent Transportation Systems, Transportation Research Part B, and Journal of Advanced16
Transportation. This statistic reveals that articles on traffic forecasting using spatial components17
are concentrated in emerging technology journals. It is not surprising as traffic forecasting is an18
integral part of intelligent transportation systems. The other 32.5% of the articles appeared in 2719
other journals.20

TABLE 1 : Distribution of publications by source

Classification of Sources Number of Retrievals Percentage
Article Division

Scientific Journals 83 63.8%
Dissertations 6 4.6%
Conference proceedings 41 31.6%

Journal Source
Transportation Research Part C: Emerging Technologies 12 14.5%
Transportation Research Record 11 13.3%
IEEE Transactions on Intelligent Transportation Systems 11 13.3%
Journal of Transportation Engineering 6 7.2%
Computer-Aided Civil and Infrastructure Engineering 4 4.8%
IET Intelligent Transport Systems 4 4.8%
Journal of Intelligent Transportation Systems 4 4.8%
Transportation Research Part B: Methodological 2 2.4%
Journal of Advanced Transportation 2 2.4%
Other 27 32.5%

To give the reader a sense of the temporal evolution of the field, we drew the life-cycle21
graph of publications in Figure 2. This figure shows the number of publications per year over22
the extracted articles in this review. As shown, utilizing spatial components in traffic forecasting23
methods is an emerging research field. We designate 1984 as the historical starting point for24
earmarking spatial components as a potential input of forecasting methods. The growth phase of25



Ermagun and Levinson 5

 

Criteria 1: Relevant discipline 

Criteria 2: Spatial information used in traffic forecasting  

Criteria 3: Officially published articles 

Criteria 4: English language 
 

Results in 113 
Articles 
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Review the references of 113 Articles 
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Data Bases 
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Traffic forecast + Space: 5,020 Results 
 

Traffic forecasting + Space: 3,890 Results 
 

Forecasting traffic + Space: 1,280 Results 
 

Traffic forecast + Spatial: 2,860 Results 

Forecasting of traffic + Space: 598 Results 
 

Keywords 

STEP 1: Literature Search  

FIGURE 1 : Flowchart diagram of study inclusion process
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this field is laid as early as 2001. As portrayed in Figure 2, the number of publications had a1
significant jump in the past two years. The drop in the number of publications for 2016 is due to2
the time of search, which was June 30th 2016. We expect the field would continue its growth, and3
more research is needed to reach the apex of maturity as we discuss later in detail.4
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FIGURE 2 : The life-cycle diagram of the research field

We summarized the 130 extracted publications in Table 2 where their key characteristics5
are provided, such as forecasting resolution, the type of data, number of traffic links incorporated6
in the study, and modeling framework. The third column of Table 2 shows the implementation of7
traffic forecasting methods is carried out mainly in North America, followed by Europe and Asia.8
Only two studies were conducted in Australia. Other continents such as South America and Africa9
are not at all covered by this literature. The Netherlands, England, and Greece are more prevalent10
than other European countries in our review. This distribution stems from the language of retrieved11
articles, which is English in this systematic review.12

In the subsequent sections, we review and synthesize 130 extracted publications across13
two principal aspects. One discusses the conceptual methodology used in publications. The other14
elaborates on emerging hypotheses and techniques aimed at detecting spatial components. Re-15
flecting on the flow of thinking that underlies the construction of spatial dependence is essential,16
as forecasting methods stand on the foundation of detecting the spatial dependence structure.17

A REVIEW OF METHODS FOR PREDICTING SHORT-TERM TRAFFIC18
In 1984, Okutani and Stephanedes (130) were the first to achieve a better traffic flow prediction19
on a link by taking into account the spatial information of its upstream feeder links. Twenty years20
later, Kamarianakis and Prastacos (115) borrowed a model, the so-called space-time autoregressive21
integrated moving average (STARIMA), from the regional science literature to forecast relative22
velocity on major arterials of Athens, Greece. Although the fundamental of STARIMA is laid as23
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TABLE 2 : Summary of literature

No. First Author Location Road Step (Min) Predictor Data Link Method
ST ML

1 Fusco (3) Italy Urban 5 Speed R 5 X
2 Zhu (4) Germany Urban 5, 10, 15 Flow S 19 X
3 Yu (5) China Urban 5 Flow R 6 X
4 Xia (6) China Urban 5 Flow R 3 X
5 Zhang (7) US Highway 5 Flow R 6 X X
6 Ko (8) Korea Expressway 1 Flow R 5 X X
7 Zhao (9) China Urban 15 Flow R 10 X
8 Jiang (10) China Urban 2 Speed R 3 X X
9 Polson (11) US Highway 5 Speed R 21 X X
10 Salamanis (12) Germany Urban 5 Travel Time R 218,576 X
11 Wu (13) US Urban 5 Flow R 14 X
12 Xu (14) China Urban 10 Flow R 17 X
13 Lv (15) US Freeway 5 Flow R - X
14 Zou (16) US Freeway 5 Speed R 5 X
15 Ma (17) Canada Highway 60 Flow R 9 X
16 Schimbinschi (18) Australia Freeway 15 Flow R 4 X X
17 Dong (19) China Freeway 2 Flow R 12 X
18 Agafonov (20) Russia Urban 10 Travel Time R 3,387 X
19 Fusco (21) Italy Urban 5 Speed R 7 X
20 Zou (22) China Urban 5 Flow R 3 X
21 Reza (23) US Highway 1 Travel Time R 28 X
22 Hou (24) US Freeway 15 Flow R 8 X
23 Shahsavari (25) US Highway 15 Flow R 36 X
24 Xing (26) China Highway 15 Flow R 120 X
25 Ahn (27) Korea Expressway 1 Flow R 4 X
26 Yang (28) US Highway 10 Flow R 3,254 X X
27 Yang (29) US Highway 1 Speed R 9 X
28 Dell’Acqua (30) US Freeway 15 Flow R - X
29 Ran (31) US Highway 5 Speed R 13 X
30 Zhong (32) US Highway - Flow R 2 X X
31 Wu (33) China Urban 5 Flow R 5 X
32 Cheng (34) England Urban 5 Flow R 22 X
33 Zhu (35) China Urban 15 Flow R 3 X
34 Chen (36) US Freeway 5 Speed R 5 X X
35 Niu (37) China Urban 15 Flow R 64 X
36 Daraghmi (38) Taiwan Urban 2 Flow R 13
37 Mohan (39) Singapore Expressway 5 Speed R 12 X
38 Yang (40) US Freeway 1 Speed R 9 X
39 Dong (41) China Freeway 2 Flow R 12 X
40 Ratrout (42) US Urban 15 Flow R 4 X
41 Dong (19) China Freeway 5 Flow R 10 X
42 Zhao (43) US Freeway 5 Flow R 2 X
43 Fabrizi (44) Italy Motorway 3 Speed R 3 X
44 Qing (45) China Urban 5 Flow S 11 X
45 Liang (46) Germany Urban 0.5 Flow S 6 X
46 Zou (47) US Highway 5 Travel time R 5 X
47 Haworth (48) England Urban 5 Flow R 22
48 Li (49) US Freeway 5 Flow R 3 X
49 Pan (50) US Freeway 5 Flow R 7 X
50 Zeng (51) US Freeway 5 Travel Time R 3 X
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TABLE 2 : Summary of literature (Continue)

No. Authors Location Road Step (Min) Predictor Data Link Method
ST ML

51 Fowe (52) US Urban 15 Flow R 8 X
52 Han (53) France Urban 15 Flow S 13,627 X
53 Huang (54) China Urban 5 Flow R 11 X
54 Zheng (55) Netherlands Urban 1 Travel time S 3 X
55 Kamarianakis (56) US Highway 5 Speed R - X
56 Haworth (57) England Urban 5 Travel Time R 22 X
57 Cheng (58) England Urban 5 Travel Time R 22 X
58 Guo (59) England Urban 15 Flow R 2 X
59 Guo (60) England Urban 15 Flow R - X
60 Pan (61) US Freeway 5 Travel Time R 3 X
61 Ngan (62) China Urban - Flow R 8 X
62 Chen (63) - - 0.5 Flow R 4 X
63 Wu (64) US Urban 5 Flow R 14
64 Yuan (65) China Urban 5 Flow R - X
65 Sun (66) China Urban 15 Flow R 31 X
66 Pascale (67) US Highway 15 Flow R 11 X
67 Djuric (68) US Highway 5 Speed R 11 X
68 Han (69) France Urban 15 Flow S 13,627 X
69 Samaranayake (70) US Highway 2.5 Speed R - X
70 Cheng (71) England Urban 5 Travel Time R 22 X
71 Deng (72) - Urban 15 Flow R 7 X
72 Min (73) - Urban 5 Flow R 502 X
73 Khosravi (74) Australia Freeway 15 Travel Time R 4 X
74 Lippi (75) US Freeway 15 Flow R 7 X
75 Min (76) China Urban 5 Flow R 50 X
76 Herring (77) US Urban 30 Travel Time S 322 X
77 Sun (78) China Expressway 5 Micro-LOS R 18 X
78 Guo (79) England Urban 15 Flow R - X
79 Lee (80) Germany Freeway 15 Flow R 15 X
80 McCrea (81) England Urban - Flow S 6 X
81 Min (82) China Urban 5 Flow R 10 X
82 Chandra (83) US Freeway 5 Flow and Speed R 5 X
83 Dong (84) - - 2 Flow R 20 X
84 Li (85) China Freeway 5 Flow R 3 X
85 Chandra (86) US Freeway 5 Flow and Speed R 5 X
86 Ghosh (87) Ireland Urban 15 Flow R 10 X
87 van Hinsbergen (88) Netherlands Motorway 5 Travel Time R 19 X
88 Bell (89) England - 3 Speed S 8 X
89 Innamaa (90) Finland Urban 5 Travel Time R 2 X
90 Yue (91) Hong Kong Urban - Flow R 7 X
91 Stathopoulos (92) Greece Urban 3 Flow R 2 X
92 Chandra (93) US Freeway 5 Speed R 5 X
93 Dimitriou (94) Greece Urban 3 Flow R 2 X
94 De Fabritiis (95) Italy Motorway 3 Speed R - X
95 Wu (96) US Freeway 5 Flow R 2 X
96 Hu (97) US Freeway 5 Flow R 4 X
97 van Lint (98) Netherlands Freeway 5 Travel Time R 14 X
98 Ye (99) China Urban 5 Flow R 8 X
99 Vlahogianni (100) Greece Urban 3 Flow R 4 X

100 Yue (101) Hong Kong Urban 1 Flow R 7 X
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TABLE 2 : Summary of literature (Continue)

No. Authors Location Road Step (Min) Predictor Data Link Method
ST ML

101 Sun (102) China Freeway 15 Flow R 20 X
102 Xie (103) US Freeway 5 Flow R 4 X
103 Van Lint (104) Netherlands Freeway 1 Travel time R 26 X
104 Wang (105) - Freeway 1 Flow S 23 X
105 Vlahogianni (106) Greece Urban 3 Flow R 3 X
106 Sun (107) China Freeway 15 Flow R 31 X
107 Kamarianakis (108) Greece Urban 7.5 Flow R 25 X
108 van Lint (104) Netherlands Highway 1 Speed S 19 X
109 Bajwa (109) Japan Expressway 5 Travel time R 5 X
110 Innamaa (110) Finland Highway 1 Travel time R 4 X
111 Ishak (111) US Freeway 5 Speed R 3 X
112 Kamarianakis (112) Greece Urban 7.5 Flow R 11 X
113 Alecsandru (113) US Freeway 5 Speed R - X
114 Vlahogianni (114) Greece Urban 3 Flow R - X
115 Kamarianakis (115) Greece Urban 7.5 Relative velocity R 25 X
116 Stathopoulos (116) Greece Urban 3 Flow R 5 X
117 Ishak (117) US Freeway 5 Speed R 4 X
118 Hu (118) China Urban - Speed R 60 X
119 van Lint (119) Netherlands Freeway - Travel Time S 13 X
120 van Lint (120) Netherlands Highway - Travel Time S 12 X
121 Tebaldi (121) US Highway 1 Flow R 15 X
122 Abdulhai (122) US Freeway 0.5, 1, 2, 5, 15 Flow R 3 X
123 Williams (123) France Motorway 30 Flow R - X
124 van Lint (124) Netherlands Motorway 1, 5, 10 Flow and Speed R 2 X
125 Park (125) US Freeway 5 Travel Time R 6 X
126 Abdulhai (126) US Freeway 0.5 Flow R 9 X
127 Park (127) US Freeway 5 Flow R 4 X
128 Larry (128) US Urban 5 Flow R 4 X
129 Clark (129) England Urban 5 Flow R 3 X
130 Okutani (130) Japan Urban 5 Flow R 4 X

Note I. R: Real data and S: Simulation data
Note II. ST: Statistical and ML: Machine Learning

early as 1975 by Cliff and Ord (131), they were the first to test this model in a traffic forecasting1
framework. The STARIMA family model is considered a generic form of autoregressive linear2
models used in traffic forecasting. This model is quite distinct from the traditional autoregressive3
integrated moving average (ARIMA) model by capturing the spatial information of neighboring4
links for traffic forecasting. We depict the taxonomy of this family of models in Figure 3. In these5
models, d, p, and q are non-negative integers and stand for degree of differentiation, order of the6
autoregressive model, and order of the moving-average model, respectively. Wk is a n× n matrix7
of spatial weights for spatial order l and temporal lag k. The terms mi and ni denote spatial order8
of the ith autoregressive and moving average terms, respectively. The components of the spatial9
weight matrix regularly satisfy three major rules:10

1. wi, j ≥ 0,11

2. wi,i = 0, and12

3. ∑
n
j=1 wi, j = 1, for all i = 1,2, ...,n. (132).13

The studies of Okutani and Stephanedes (130) and Kamarianakis and Prastacos (115)14
formed the essence of a methodological strand of thinking at different points in time. They15
acknowledged embedding spatial information as the potential of enhancing traditional temporal16
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FIGURE 3 : Taxonomy of spatiotemporal family models

models. These methods have burgeoned and developed in the literature. The spatiotemporal meth-1
ods stand on the foundation of traditional temporal techniques. The only refinement is benefiting2
from the spatial information to advance the accuracy of predictions. The literature that discusses3
this subject has been prolific. For instance, Smith et al. (133) classified temporal traffic fore-4
casting models into parametric and non-parametric, and discussed their pros and cons in detail.5
Vlahogianni et al. (134) also broadly reviewed the short-term traffic forecasting methods, and6
compared the proposed models in parametric and non-parametric framework. We hence eschew7
digging into the performance of models and their formulations. Rather, we elaborate the results8
of the studies through the lens of spatial components effectiveness and modeling performance. To9
achieve this, we review the studies in three separate classes. The following subsections expound10
these categories.11

Class 1: Spatial Effectiveness Emphasis12
In this class, the studies aim at examining the effectiveness of spatial components by comparing13
models with and without spatial information. Williams’ ARIMAX model (123) treats the upstream14
traffic flow series as transfer function inputs into the ARIMA model. Embedding the spatial factor15
enhanced the accuracy of traffic flow forecasting by 15.6%. To forecast the traffic speed in five16
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stations on I-4 in the downtown region of Orlando, Florida, Chandra and Al-Deek (93) developed1
a univariate ARIMA time-series model and a vector autoregressive (VAR) model. Comparing both2
models, they found VAR significantly outperforms ARIMA. This is consistent with Chandra and3
Al-Deek (83).4

To investigate whether the inclusion of spatial information improves the accuracy of the5
artificial neural network (ANN) model, Zeng and Zhang (51) compared the state-space neural net-6
work (SSNN) model with traditional ANN models. The findings expounded that the SSNN model7
consistently outperforms other neural network models in both short and long horizons. Wu et al.8
(33) added the spatial information in k-nearest neighbor model to enhance the accuracy of traffic9
flow forecasting in urban roads of Guiyang, China. The performance of the improved k-nearest10
neighbor model was also compared with the traditional historical average and neural network mod-11
els without spatial information. The results indicated the model including both temporal and spatial12
information reduces the error significantly in comparison with the model with only temporal in-13
formation. The historical average model was also found the worst model among the developed14
models.15

To investigate the effectiveness of spatial information, Dong et al. (19) compared a spa-16
tiotemporal model with traditional ARIMA and a linear regression model encompassing only spa-17
tial information. The output of the models affirmed the superiority of the spatiotemporal model. It18
was also noted that the temporal input factor provides more accurate information than the spatial19
input factor in uncongested situations. In congested conditions, it reverses.20

Class 2: Modeling Performance Emphasis21
Studies of this class compare the performance of sundry modeling techniques to introduce the most22
efficient method. Kamarianakis and Prastacos (108) embedded the spatial information in the tra-23
ditional ARIMA model and compared its performance with STARIMA, where the spatial compo-24
nents are captured with a spatial weight matrix. The performance of both models was found quite25
close. However, a point worthy of attention is that the STARIMA model included 7 parameters26
and a naive spatial weight matrix (first- and second-order adjacent matrix), whereas the ARIMA27
model encompassed 75 different parameters. Sun et al. (107) employed both spatial and temporal28
information, and compared the accuracy of random walk, Markov chain, and Bayesian network29
methods by the root mean square error. The findings stated the Bayesian network performs better30
than Markov chain, and the latter outperforms the random walk model. Stathopoulos et al. (92)31
introduced a fuzzy rule-based system method, which is the combination of a Kalman filter and an32
artificial neural network methods. This study compared the performance of the combined model33
against the other two models using three different measures, namely mean absolute relative error,34
mean square relative error, and normalized error. Building on the results, they concluded that the35
neural network method generally gives more accurate results than Kalman filter method, while the36
authors’ fuzzy rule-based system method outperformed both models.37

Min et al. (82) compared the accuracy prediction power of Dynamic STARIMA with mul-38
tivariate adaptive regression splines (MARS). The former and STARIMA are alike in structure,39
whereas the spatial weight matrix of the Dynamic STARIMA is derived from traffic flow infor-40
mation of links, and not simply adjacency. It enables the model to be updated dynamically in41
a real network. The latter is a non-parametric model. The comparison of two models indicated42
the superiority of Dynamic STARIMA. Interestingly, Ye et al. (99) found that MARS is more43
accurate than linear regression and neural network methods. This may result in superiority of44
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Dynamic STARIMA over ANN. Min et al. (76) generalized the STARIMA model and intro-1
duced GSTARIMA model, which relaxes the assumption that the autoregressive parameters and2
the moving average parameters are the same for all traffic locations. They noted the performance3
of GSTARIMA model exceeded the STARIMA model.4

Class 3: Hybrid Emphasis5
Class 3 is a combination of Class 1 and Class 2. We thereupon labeled this class hybrid analysis, as6
the studies of this class not only scrutinize the potential of spatial information, but they also com-7
pare the modeling techniques. One comprehensive study developed four different artificial neural8
network models and compared the accuracy of them with historical average, Kalman filtering, real-9
time profile, and exponential smoothing (125). The four artificial network models were distinct in10
whether they include spatial information, of which the information of upstream and downstream11
links was selected for travel time forecasting. In general, they underlined that the neural network12
with temporal information is superior to other models in predicting one or two steps ahead. For13
longer horizons, however, adding spatial information of upstream and downstream traffic links14
augments the forecasting models.15

In a comparison of state-space neural network models, van Lint et al. (120) noted that the16
highly nonlinear and complex characteristics of the freeway travel time necessitates a modeling17
approach that is able to deal with this complexity. They used SSNN as the best model to capture18
the complex nonlinear spatiotemporal relationships between traffic links, and compared various19
version of SSNN. The partially connected SSNN model was found inferior to connected SSNN20
and reduced SSNN models. Likewise, van Lint (104) found the excellence of SSNN in a com-21
prehensive comparison with Kalman filter, feed-forward neural network (FNN), modular FNN,22
regular FNN, spectral-bases FNN, linear regression, and support vector-regression.23

Kamarianakis and Prastacos (115) compared the forecasting performance of historical aver-24
age, ARIMA, VARMA, and STARIMA models. Comparing the root mean square error of models,25
they found the last three models perform remarkably better than historical average, while there is26
not a significant difference between ARIMA, VARMA, and STARIMA models. Vlahogianni et al.27
(100) employed ARIMA, state-space, and neural network methods to forecast traffic flow of a link28
by using its immediate upstream and downstream links. The results indicated the mean relative er-29
ror of the state-space model that considers the information of upstream and downstream links and30
the ARIMA model is 12% and 18%, respectively. They concluded that the neural network method31
outperforms both ARIMA and state-space models. It is in line with the previous studies of the32
authors on the same data (106). They also mentioned the accuracy of the neural network method33
depends on the prediction technique, where the modular predictor surpasses genetically optimized34
multi-layer perceptron (MLP) and statistic MLP. Guo et al. (79) tested three distinct machine learn-35
ing methods, namely time delay, recurrent neural networks, and the k-nearest neighbor for traffic36
flow forecasting in the urban area of London. Comparing the models, they recommended k-nearest37
neighbor based prediction models with error feedback for short-term traffic prediction.38

This trajectory leads us to the following conclusions:39

• Irrespective of which method is selected, spatial information inclusion in short-term traf-40
fic forecasting models boosts the accuracy of prediction, particularly in congested traffic41
regimes and longer time horizons.42

• There is a broad and longstanding agreement that non-parametric methods outperform43
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the naive statistical methods such as historical average, real time profile, and exponential1
smoothing. However, to make a conclusion regarding the performance of neural network2
methods against STARIMA family models, more research is needed in this field.3

A REVIEW OF METHODS FOR CAPTURING SPATIAL INFORMATION4
It has been over three decades since spatial information was first captured in a traffic corridor for5
the sake of traffic flow prediction (130). In this section, we discuss the evolution of techniques for6
dealing with capturing spatial information for traffic forecasting. We take a fairly narrow view of7
analysis, and delve into the emerged approaches from two conceptual aspects. For each aspect, we8
elaborate on the nature of spatial components used in traffic forecasting, and identify the notion9
behind an objective evaluation of approaches.10

A Naive Approach11
Traffic conditions of a downstream section of a road are highly associated with traffic conditions12
upstream (as those vehicles will ultimately travel to the link in question). Thereupon, spatial infor-13
mation of upstream sections may capture the dynamics of traffic. Following the study of Okutani14
and Stephanedes (130), Larry (128) utilized the traffic flow of detectors on the approach of each15
upstream intersection to predict future arrivals. He noticed the longer horizons are achieved when16
spatial information is embedded in traffic forecasting methods. In another study, Park et al. (127)17
found the traffic flow of upstream links is highly correlated with the study link, and mentioned18
spatial information is as informative as temporal information. Stathopoulos and Karlaftis (116)19
predicted traffic flow in an urban corridor while using the spatial information of four consecutive20
loop detectors in the upstream of the study section. Although they acknowledged spatial informa-21
tion as a catalyst, they noticed farther links are correlated with the study link over a longer time22
lag. Vlahogianni et al. (106) used the flow information of two upstream loop detectors to predict23
the traffic flow of the study link in an urban arterial. They argued that the spatial information has24
the potential of enhancing the accuracy of forecasting methods, particularly over a longer traffic25
horizon.26

Not only is a link affected by its upstream links, but downstream links also may involve traf-27
fic conditions of their upstream links. This is a case in congested situations, where the downstream28
link propagates its traffic to upstream links. Abdulhai et al. (122) benefited from both upstream29
and downstream flow information to take backward propagating shockwaves into account. Ishak30
et al. (117) embedded both downstream and upstream information in the forecasting modeling.31
Studies took a step forward by examining to what extent the downstream information is crucial32
in traffic forecasting. van Lint et al. (120) highlighted the downstream information plays a more33
critical role than upstream information in congested situations for travel time forecasting. How-34
ever, no superiority was witnessed in uncongested conditions. In the congested regime, Djuric et35
al. (68) also concluded that the current speed of the downstream link has a greater weight than the36
upstream link for speed forecasting. This is also confirmed by Daraghmi et al. (38), who made the37
same conclusion for traffic flow forecasting on an arterial road. Vlahogianni et al. Zou et al. (16)38
used the information of two upstream and two downstream links. They developed distinct models39
to explore the role of downstream and upstream links in forecasting of traffic speed. No signifi-40
cant difference was found between using either downstream or upstream information for various41
prediction horizons in both congested and uncongested regimes.42
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A Modest Approach1
Studies corroborated the hypothesis about enhancing the accuracy of forecasting methods by incor-2
porating the information of neighboring links. Researchers, practitioners, and policymakers who3
seek to develop intelligent transportation systems embraced this hypothesis with enthusiasm. How-4
ever, little information was known about which and how many links is needed to be included in5
forecasting methods. Researchers dealt properly and fairly with this complication. Consequently,6
two criteria were introduced to select the neighboring links: (1) correlation-coefficient assessment7
and (2) distance adjustment. The former probes deeply into the data to explore whether and to8
what extent the information of neighboring links is correlated with the study link. The highly cor-9
related links are then selected as an input of forecasting methods. The latter borrows from regional10
science, and more specifically from the first law of geography. In accordance with this law, every11
link is related with every other links, but near links are more related than distant links. Particularly12
noticeable is the word “nearness.” Despite the existence of many alternative methods to define13
the nearness and distance threshold in regional science, the traffic forecasting field has benefited14
mostly from spatial information of adjacent links.15

From the correlation-coefficient assessment side, Sun et al. (107) calculated the Pearson16
correlation coefficient to rank the input spatial and temporal exogenous variables. They then se-17
lected the four most correlated upstream and downstream links in different time regimes. Building18
on their experimental results, they concluded that not only near links, but also distant links in a19
traffic network, have high correlation coefficients. This association is needed to be employed for20
traffic flow forecasting. Likewise, Chandra and Al-Deek (93) and Chandra and Al-Deek (83) uti-21
lized cross correlation function and found that past values of an input series influence the future22
values of a response series. Huet al. (97) also adopted the cross correlation function to select the23
relative neighboring links, rather than the selection of immediate upstream and downstream links.24
The results of the analyses showed the immediate upstream and downstream link as well as the25
eighth link located in the upstream are the most correlated links. They also found the downstream26
link is more effective than upstream links, and validated this by the existence of a ramp between27
the upstream link and the study link, which reduces the correlation.28

From the distance adjustment side, most studies using this criteria fall into the spatiotem-29
poral methodological category, and prejudge the spatial dependency by creating a spatial weight30
matrix. As we mentioned, two methods are adopted to identify the components of a spatial weight31
matrix in traffic forecasting. One simply assumes just adjacent links have a spatial dependence32
with the study links. The other takes a step forward more comprehensively measuring the spatial33
dependency and states both adjacent and distant links are spatially correlated with the study link;34
however, the strength of the dependency is reduced by increasing the distance. In traffic forecast-35
ing, the ring of dependency is labeled by “order.” For example, the first-order adjacency matrix36
shows the dependency between the study link and its immediate adjacent links. The second-order37
adjacency matrix, however, indicates the links that are connected to the study links indirectly and38
with having the first-order links in middle.39

Kamarianakis et al. (112) used the first- and second-order adjacency matrix to capture spa-40
tial dependency. Studies using the distance adjusted approach simply expect all adjacent links have41
a similar effect on the study link. Thereupon, spatial weight matrices encompass binary elements,42
in which zero and one values stand for spatial independence and spatial dependence, respectively.43
These matrices are occasionally row normalized for statistical and prediction reasons that leads44
to not binary elements. Although this normalization results in dissimilar spatial dependency, this45
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dissimilarity does not stem from a conceptual traffic theory.1
In our best knowledge, only three studies considered dissimilar spatial dependency in cre-2

ating spatial weight matrices. One studied the traffic flow forecasting of a link using the flow3
information of the upstream T-junction (82). The weight of spatial dependence for each upstream4
links equals the traffic flow ratio of each link to the sum of the flow in the T-junction. This needs5
a dynamic update of spatial weights in real time. The second used the speed differentials over6
space formula and defined the spatial dependency between two links as the difference between the7
average speeds of links divided by their distance (71). Likewise, the third employed the speed8
differentials over speed formula and defined the spatial dependency between two links as the dif-9
ference between the average speeds of links divided by the speed of the target link (34). The10
theoretical concept behind this calculation is a decrease in traffic speed on one link follows relative11
decrease in traffic speed of its adjacent link.12

CLOSING REMARKS AND OPPORTUNITIES FOR FUTURE RESEARCH13
In this section, we intend to deal with the last two questions from the introduction:14

• What is the lacuna in the current literature?15

• What directions should research take?16

To answer these questions, we need to dive into the types of traffic networks studied in17
the literature. However, a preliminary knowledge of graph theory is required, which drove us to18
provide a brief introduction here. For details the reader may refer to (135). A graph is a collection19
of nodes that are connected by links. In accordance with graph theory, the following terminologies20
are drawn:21

• Two links are parallel if they connect the same pair of nodes.22

• Two links are adjacent if they share a common node.23

• A link is loop if its two nodes are the same.24

• A graph is simple if it has no parallel links or loops.25

• A graph is directed if its links show direction.26

• A graph is connected if at least one link exists between every pair of nodes.27

• A ring network is a closed path where every node has exactly two links incident with it.28

• A grid network is a network topology where each node corresponds to a point in a plane.29

Having these terminologies, a traffic network is exemplified by a graph G = (N,L) encom-30
passes N nodes and L links, which is both directed and connected. Studies have explored the spatial31
dependency between traffic links in three distinct network topologies: (1) simple network, (2) grid32
network, and (3) ring network. The first topology is dominant in analysis, and where one of the33
other two topologies was analyzed, the selected test sub-graph collapsed the network to a simple34
network. Irrespective of which topology is chosen, all studies, except one (28), have explored spa-35
tial dependency between traffic links for the sake of traffic forecasting in a simple graph including36
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c. Ring network adopted from Fabritiis et al (2008) d. Grid network adopted from Sun et al (2005) 

a. Simple network adopted from Min et al (2009) b. Simple network adopted from Cheng et al (2014) 

FIGURE 4 : Typical network topology used in the literature

upstream and downstream links. We draw the schematic of networks used in the studies in Figure1
4.2

We are of the opinion that a large gulf exists between the realistic spatial dependence of3
traffic links on real networks and the typical sub-networks which have been studied in the research4
to date. We detected the following gaps in the literature, which signpost the way forward for further5
research.6

1. As alluded to previously, studies capture spatial dependency of either adjacent or distant7
upstream and downstream links with the study link. We hypothesize that the spatial cor-8
relation between traffic links follows a more sophisticated pattern, which is not captured9
simply by distance rule. We now have new evidence to corroborate our hypothesis. For10
instance, Hu et al. (97) revealed the first- and the eighth-order upstream links, but not11
other upstream links, are highly correlated with the link of interest in their specific ex-12
ample. A comprehensive recent paper (28) investigated the correlation between traffic13
links in the highway network of Twin Cities, Minnesota. The results highlighted that the14
contributive links in forecasting models are widely distributed in the traffic network, and15
are not a function of distance. This leads to this conclusion that the spatial dependency16



Ermagun and Levinson 17

between traffic links is more complex in a whole network than what is presumed to exist1
in a corridor.2

2. The spatially relevant links are selected either by prejudgment or by correlation-coefficient3
analysis, each of which is criticized by a drawback. In the former, researchers assume4
neighboring links are the most spatially correlated links with the study link, and em-5
bed their information in forecasting methods as an input. This prejudgment results in6
increasing error, if the adjacent link has not any spatial effect on the study link, as we7
discussed in preceding paragraph. The latter does not suffer from this shortcoming, as8
the input information is selected according to the most highly correlated links. However,9
a similar spatial effect is typically considered for all selected links, which may distort10
the accuracy of models.11

3. According to graph theory, two links are adjacent if they share a common node, while12
they are parallel if they connect the same pair of nodes. All studies, except one (28), have13
developed forecasting methods in a corridor test sample, where all links are connected14
sequentially together. As a result, they studied the correlation of adjacent links and15
assume a similarity between the behavior of both parallel and adjacent links. We do not16
hold this assumption reasonable and present here the complementary and competitive17
nature of traffic link to shed light on the dissimilarity of spatial correlation between18
parallel and adjacent links. By our definition, two links are complementary, when an19
increase in the cost of one decreases the flow of both links. Two links are competitive,20
when an increase in the cost of one link decreases the flow of itself, but increases the21
flow of the other. We then expect a positive and a negative spatial dependency between22
complementary and competitive links, respectively. This nature, however, has not been23
captured in the literature.24

This systematic review highlighted that the field is approaching its maturity, while it is still25
as crude as it is perplexing. It is perplexing in the conceptual methodology used, and it is crude in26
capturing spatial information.27
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